Oracle 12c introduced Partial indexing, which works well for simple partitioned tables with literals. However, it has several significant issues:
Continue readingCategory Archives: query optimizing
Slow index access “COL=:N” where :N is NULL
All Oracle specialists know that a predicate X=NULL can never be true and we should use “X is NULL” in such cases. The Oracle optimizer knows about that, so if we create a table like this:
Continue readingSimple function returning Parallel slave info
You can add also any information from v$rtsm_sql_plan_monitor if needed
create or replace function px_session_info return varchar2 parallel_enable as
vSID int;
res varchar2(30);
begin
vSID:=userenv('sid');
select
to_char(s.server_group,'fm000')
||'-'||to_char(s.server_set,'fm0000')
||'-'||to_char(s.server#,'fm0000')
||'('||s.sid||','||s.degree||'/'||s.req_degree||')'
into res
from v$px_session s
where s.sid=vSID;
return res;
exception when no_data_found then
return 'no_parallel';
end;
/
Simple example:
select--+ parallel
px_session_info, count(*)
from sys.obj$
group by px_session_info
/
PX_SESSION_INFO COUNT(*)
------------------------ --------
001-0002-0001(630,2/2) 38298
001-0002-0002(743,2/2) 34706
PL/SQL functions and statement level consistency
You may know that whenever you call PL/SQL functions from within SQL query, each query in the function is consistent to the SCN of its start and not to the SCN of parent query.
Simple example:
create table test as
select level a, level b from dual connect by level<=10;
create or replace function f1(a int) return int as
res int;
begin
select b into res
from test t
where t.a=f1.a;
dbms_lock.sleep(1);
return res;
end;
/
As you can see we created a simple PL/SQL function that returns the result of the query select b from test where a=:input_var
But lets check what does it return if another session changes data in the table:
-- session 2:
begin
for i in 1..30 loop
update test set b=b+1;
commit;
dbms_lock.sleep(1);
end loop;
end;
/
-- session 1:
SQL> select t.*, f1(a) func from test t;
A B FUNC
---------- ---------- ----------
1 1 1
2 2 3
3 3 5
4 4 7
5 5 9
6 6 11
7 7 13
8 8 15
9 9 17
10 10 19
10 rows selected.
As you can see we got inconsistent results in the column FUNC, but we can easily fix it using OPERATORs:
CREATE OPERATOR f1_op
BINDING (INT)
RETURN INT
USING F1;
Lets revert changes back and check our query with new operator now:
--session 1:
SQL> update test set b=a;
10 rows updated.
SQL> commit;
Commit complete.
-- session 2:
begin
for i in 1..30 loop
update test set b=b+1;
commit;
dbms_lock.sleep(1);
end loop;
end;
/
-- session 1:
SQL> select t.*, f1(a) func, f1_op(a) op from test t;
A B FUNC OP
---------- ---------- ---------- ----------
1 2 2 2
2 3 5 3
3 4 8 4
4 5 11 5
5 6 14 6
6 7 17 7
7 8 20 8
8 9 23 9
9 10 26 10
10 11 29 11
10 rows selected.
As you can see, all values in the column OP are equal to the values of B, while, in turn, function F1 returns inconsistent values.
SQL: Fast ways to count unique characters in the string
Test data:
create table t_str as
select round(dbms_random.value(1e10,9e10)) str from dual connect by level<=1e5
/
PL/SQL variant:
with
function ff(s varchar2) return varchar2
as
type avarchars is table of varchar2(100) index by varchar2(1);
st avarchars;
idx varchar2(1);
res varchar2(10);
function iterate( idx in out nocopy varchar2, arr in out nocopy avarchars)
return boolean
as --pragma inline;
begin
if idx is null
then idx:=arr.first;
else idx:=arr.next(idx);
end if;
return idx is not null;
end;
begin
for i in 1..length(s) loop
st(substr(s,i,1)):=1;
end loop;
while iterate(idx,st) loop
res:=res||idx;
end loop;
return res;
end;
select min(ff(str)) res
from t_str
/
SQL-only variant:
select min(fstr)
from t_str t
cross apply (
select listagg(c) within group (order by 1) fstr
from (select
distinct substr(t.str, level, 1) c
from dual
connect by level <= length(t.str)
)
)
/
Timings:
SQL> create table t_str as
2 select round(dbms_random.value(1e10,9e10)) str from dual connect by level<=1e5
3 /
Table created.
Elapsed: 00:00:00.55
SQL> with
2 function ff(s varchar2) return varchar2
3 as
4 type avarchars is table of varchar2(100) index by varchar2(1);
5 st avarchars;
6 idx varchar2(1);
7 res varchar2(10);
8
9 function iterate( idx in out nocopy varchar2, arr in out nocopy avarchars)
10 return boolean
11 as --pragma inline;
12 begin
13 if idx is null
14 then idx:=arr.first;
15 else idx:=arr.next(idx);
16 end if;
17 return idx is not null;
18 end;
19 begin
20 for i in 1..length(s) loop
21 st(substr(s,i,1)):=1;
22 end loop;
23 while iterate(idx,st) loop
24 res:=res||idx;
25 end loop;
26 return res;
27 end;
28
29 select min(ff(str)) res
30 from t_str
31 /
RES
--------------------------------------------------------------
0123
Elapsed: 00:00:00.48
SQL> select min(fstr) res2
2 from t_str t
3 cross apply (
4 select listagg(c) within group (order by 1) fstr
5 from (select
6 distinct substr(t.str, level, 1) c
7 from dual
8 connect by level <= length(t.str)
9 )
10 )
11 /
RES2
--------------------------------------------------------------
0123
Elapsed: 00:00:01.01
And much easier variant if you need your strings contain digits only:
select min(translate('0123456789', translate('z0123456789','z'||str,'z'), chr(0)))
from t_str
flashback_transaction_query: fixed table full table scan
Recently I got a question: why CBO chooses “FIXED TABLE FULL TABLE” scan instead of “FIXED INDEX” in case of a join to flashback_transaction_query view with the predicate “q.xid = a.versions_xid”:
select
versions_xid,
versions_startscn,
versions_starttime,
versions_endscn,
versions_endtime,
--scn_to_timestamp,
to_char(a.classification), a.*
from vms.advisory_arch_20190624 versions between
timestamp timestamp'2019-06-24 13:28:00' and maxvalue a
join flashback_transaction_query q
on q.xid = a.versions_xid
where a.advisoryid = 100511;
As you can see flashback_transaction_query is just a wrapper view for SYS.X$KTUQQRY, ie fixed table, which obviously has good “fixed index” for that:
And simple query with the predicate xid=hextoraw(…) uses it:
In such cases we need to check another part of the equality predicate, because usually it means that we use some function instead of literal, bind variable or SQL operator. Simple example with v$session_event:
explain plan for
SELECT SUM(E.TIME_WAITED)/100 AS TIME_WAITED
FROM V$SESSION_EVENT E
WHERE E.SID = SYS_CONTEXT('userenv', 'sid')
AND (E.EVENT = 'TCP Socket (KGAS)' OR E.EVENT LIKE 'SQL*Net%dblink');
But it works fine with bind variables or if we use “precompute_subquery” hint to replace function call with the computed literal:
SQL> explain plan for
2 SELECT SUM(E.TIME_WAITED)/100 AS TIME_WAITED
3 FROM V$SESSION_EVENT E
4 WHERE E.SID = :sid
5 AND (E.EVENT = 'TCP Socket (KGAS)' OR E.EVENT LIKE 'SQL*Net%dblink');
PLAN_TABLE_OUTPUT
---------------------------------------------------------------------------------------------
Plan hash value: 404853953
---------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
---------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 47 | 1 (100)| 00:00:01 |
| 1 | SORT AGGREGATE | | 1 | 47 | | |
| 2 | NESTED LOOPS | | 3 | 141 | 1 (100)| 00:00:01 |
|* 3 | FIXED TABLE FIXED INDEX| X$KSLES (ind:1) | 403 | 6851 | 1 (100)| 00:00:01 |
|* 4 | FIXED TABLE FIXED INDEX| X$KSLED (ind:2) | 1 | 30 | 0 (0)| 00:00:01 |
---------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
3 - filter("S"."KSLESSID"=TO_NUMBER(:SID) AND "S"."KSLESWTS"<>0 AND
"S"."INST_ID"=USERENV('INSTANCE'))
4 - filter(("D"."KSLEDNAM"='TCP Socket (KGAS)' OR "D"."KSLEDNAM" LIKE
'SQL*Net%dblink') AND "S"."KSLESENM"="D"."INDX")
---------------------------------------------------------------------------------
---------------------------------------------------------------------------------
1 explain plan for
2 SELECT SUM(E.TIME_WAITED)/100 AS TIME_WAITED
3 FROM
4 V$SESSION_EVENT E
5 WHERE E.SID in (select/*+ precompute_subquery */ SYS_CONTEXT('userenv', 'sid') from dual) AND (E.EVENT =
6* 'TCP Socket (KGAS)' OR E.EVENT LIKE 'SQL*Net%dblink')
SQL> /
Explained.
SQL> @xplan ""
PLAN_TABLE_OUTPUT
---------------------------------------------------------------------------------------------
Plan hash value: 2330447422
---------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
---------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 50 | 0 (0)| 00:00:01 |
| 1 | SORT AGGREGATE | | 1 | 50 | | |
| 2 | NESTED LOOPS | | 3 | 150 | 0 (0)| 00:00:01 |
|* 3 | FIXED TABLE FIXED INDEX| X$KSLES (ind:1) | 514 | 10280 | 0 (0)| 00:00:01 |
|* 4 | FIXED TABLE FIXED INDEX| X$KSLED (ind:2) | 1 | 30 | 0 (0)| 00:00:01 |
---------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
3 - filter("S"."KSLESSID"=382 AND "S"."KSLESWTS"<>0 AND ("S"."CON_ID"=0 OR
"S"."CON_ID"=3) AND "S"."INST_ID"=USERENV('INSTANCE'))
4 - filter("S"."KSLESENM"="D"."INDX" AND ("D"."KSLEDNAM"='TCP Socket (KGAS)' OR
"D"."KSLEDNAM" LIKE 'SQL*Net%dblink'))
19 rows selected.
So the same problem we got with flashback_transaction_query, because VERSIONS_XID is a pseudocolumn in fact (ie function). So we can easily hide it in inline view:
SQL> ;
1 explain plan for
2 with a as (
3 select/*+ no_merge */
4 versions_xid, versions_startscn, versions_starttime, versions_endscn, versions_endtime, --scn_to_timestamp,
5 to_char(x.classification),
6 x.*
7 from advisory_arch_20190624 versions between timestamp to_timestamp('2019-06-25 22:14:00', 'YYYY-MM-DD HH24:MI:SS') and maxvalue x
8 where x.advisoryid = 100511
9 )
10 select/*+ leading(a q) use_nl(q) index(q (xid)) */ *
11 from a
12* join flashback_transaction_query q on q.xid = a.versions_xid
SQL> /
Explained.
SQL> @xplan +outline
P_FORMAT
------------------------
typical +outline
1 row selected.
PLAN_TABLE_OUTPUT
-------------------------------------------------------------------------------------------------------
Plan hash value: 2200855354
---------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
---------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 2596 | 6 (0)| 00:00:01 |
| 1 | NESTED LOOPS | | 1 | 2596 | 6 (0)| 00:00:01 |
| 2 | VIEW | | 1 | 98 | 6 (0)| 00:00:01 |
|* 3 | TABLE ACCESS FULL | ADVISORY_ARCH_20190624 | 1 | 9 | 6 (0)| 00:00:01 |
|* 4 | FIXED TABLE FIXED INDEX| X$KTUQQRY (ind:1) | 1 | 2498 | 0 (0)| 00:00:01 |
---------------------------------------------------------------------------------------------------
Outline Data
-------------
/*+
BEGIN_OUTLINE_DATA
FULL(@"SEL$4" "X"@"SEL$4")
USE_NL(@"SEL$62A6D27E" "X$KTUQQRY"@"SEL$3")
LEADING(@"SEL$62A6D27E" "A"@"SEL$1" "X$KTUQQRY"@"SEL$3")
FULL(@"SEL$62A6D27E" "X$KTUQQRY"@"SEL$3")
NO_ACCESS(@"SEL$62A6D27E" "A"@"SEL$1")
OUTLINE(@"SEL$3")
OUTLINE(@"SEL$2")
MERGE(@"SEL$3" >"SEL$2")
OUTLINE(@"SEL$335DD26A")
OUTLINE(@"SEL$1")
MERGE(@"SEL$335DD26A" >"SEL$1")
OUTLINE(@"SEL$5C160134")
OUTLINE(@"SEL$5")
MERGE(@"SEL$5C160134" >"SEL$5")
OUTLINE_LEAF(@"SEL$62A6D27E")
OUTLINE_LEAF(@"SEL$4")
ALL_ROWS
DB_VERSION('18.1.0')
OPTIMIZER_FEATURES_ENABLE('18.1.0')
IGNORE_OPTIM_EMBEDDED_HINTS
END_OUTLINE_DATA
*/
Predicate Information (identified by operation id):
---------------------------------------------------
3 - filter("X"."ADVISORYID"=100511)
4 - filter("XID"="A"."VERSIONS_XID" AND ("CON_ID"=0 OR "CON_ID"=3))
And in addition a couple of my scripts for fixed tables:
https://github.com/xtender/xt_scripts/blob/master/fixed_tables.sql
https://github.com/xtender/xt_scripts/blob/master/fixed_indexes.sql
Workarounds for JPPD with view and table(kokbf$), xmltable or json_table functions
You may know that table() (kokbf$ collection functions), xmltable and json_table functions block Join-Predicate PushDown(JPPD).
Simple example:
create table xtest(a, b, c) as select mod(level,1000),level,rpad('x',100,'x') from dual connect by level<=1e4 / create index itest on xtest(a) / create or replace view vtest as select a,count(b) cnt from xtest group by a / call dbms_stats.gather_table_stats(user,'xtest'); /
select distinct v.* from table(sys.odcinumberlist(1,2,3)) c, vtest v where v.a = c.column_value; Plan hash value: 699667151 ------------------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ------------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | 19 | 80 (4)| 00:00:01 | | 1 | HASH UNIQUE | | 1 | 19 | 80 (4)| 00:00:01 | |* 2 | HASH JOIN | | 1 | 19 | 79 (3)| 00:00:01 | | 3 | COLLECTION ITERATOR CONSTRUCTOR FETCH| | 1 | 2 | 29 (0)| 00:00:01 | | 4 | VIEW | VTEST | 1000 | 17000 | 49 (3)| 00:00:01 | | 5 | HASH GROUP BY | | 1000 | 8000 | 49 (3)| 00:00:01 | | 6 | TABLE ACCESS FULL | XTEST | 10000 | 80000 | 48 (0)| 00:00:01 | ------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 2 - access("V"."A"=VALUE(KOKBF$))
select/*+ cardinality(c 1) use_nl(v) push_pred(v) */ * from json_table('{"a":[1,2,3]}', '$.a[*]' COLUMNS (a int PATH '$')) c ,vtest v where c.a = v.a; Plan hash value: 664523328 -------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | -------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | 28 | 78 (2)| 00:00:01 | | 1 | NESTED LOOPS | | 1 | 28 | 78 (2)| 00:00:01 | | 2 | JSONTABLE EVALUATION | | | | | | |* 3 | VIEW | VTEST | 1 | 26 | 49 (3)| 00:00:01 | | 4 | SORT GROUP BY | | 1000 | 8000 | 49 (3)| 00:00:01 | | 5 | TABLE ACCESS FULL | XTEST | 10000 | 80000 | 48 (0)| 00:00:01 | -------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 3 - filter("V"."A"="P"."A") Hint Report (identified by operation id / Query Block Name / Object Alias): Total hints for statement: 1 (U - Unused (1)) --------------------------------------------------------------------------- 1 - SEL$F534CA49 / V@SEL$1 U - push_pred(v)
select/*+ leading(c v) cardinality(c 1) use_nl(v) push_pred(v) */ v.* from xmltable('(1,3)' columns a int path '.') c,vtest v where c.a = v.a(+); Plan hash value: 564839666 ------------------------------------------------------------------------------------------------------------ | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ------------------------------------------------------------------------------------------------------------ | 0 | SELECT STATEMENT | | 1 | 28 | 78 (2)| 00:00:01 | | 1 | NESTED LOOPS OUTER | | 1 | 28 | 78 (2)| 00:00:01 | | 2 | COLLECTION ITERATOR PICKLER FETCH| XQSEQUENCEFROMXMLTYPE | 1 | 2 | 29 (0)| 00:00:01 | |* 3 | VIEW | VTEST | 1 | 26 | 49 (3)| 00:00:01 | | 4 | SORT GROUP BY | | 1000 | 8000 | 49 (3)| 00:00:01 | | 5 | TABLE ACCESS FULL | XTEST | 10000 | 80000 | 48 (0)| 00:00:01 | ------------------------------------------------------------------------------------------------------------ Predicate Information (identified by operation id): --------------------------------------------------- 3 - filter("V"."A"(+)=CAST(TO_NUMBER(SYS_XQ_UPKXML2SQL(SYS_XQEXVAL(VALUE(KOKBF$),0,0,54525952,0), 50,1,2)) AS int )) Hint Report (identified by operation id / Query Block Name / Object Alias): Total hints for statement: 1 (U - Unused (1)) --------------------------------------------------------------------------- 1 - SEL$6722A2F6 / V@SEL$1 U - push_pred(v)
And compare with this:
create global temporary table temp_collection(a number); insert into temp_collection select * from table(sys.odcinumberlist(1,2,3)); select/*+ cardinality(c 1) no_merge(v) */ distinct v.* from temp_collection c, vtest v where v.a = c.a; Plan hash value: 3561835411 ------------------------------------------------------------------------------------------------------------ | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ------------------------------------------------------------------------------------------------------------ | 0 | SELECT STATEMENT | | 1 | 26 | 41 (3)| 00:00:01 | | 1 | HASH UNIQUE | | 1 | 26 | 41 (3)| 00:00:01 | | 2 | NESTED LOOPS | | 1 | 26 | 40 (0)| 00:00:01 | | 3 | TABLE ACCESS FULL | TEMP_COLLECTION | 1 | 13 | 29 (0)| 00:00:01 | | 4 | VIEW PUSHED PREDICATE | VTEST | 1 | 13 | 11 (0)| 00:00:01 | |* 5 | FILTER | | | | | | | 6 | SORT AGGREGATE | | 1 | 8 | | | | 7 | TABLE ACCESS BY INDEX ROWID BATCHED| XTEST | 10 | 80 | 11 (0)| 00:00:01 | |* 8 | INDEX RANGE SCAN | ITEST | 10 | | 1 (0)| 00:00:01 | ------------------------------------------------------------------------------------------------------------ Predicate Information (identified by operation id): --------------------------------------------------- 5 - filter(COUNT(*)>0) 8 - access("A"="C"."A")
You can see that JPPD works fine in case of global temporary tables and, obviously, the first workaround is to avoid such functions with complex views.
But in such simple queries you have 2 other simple options:
1. you can avoid JPPD and get optimal plans using CVM(complex view merge) by just simply rewriting the query using IN or EXISTS:
select * from vtest v where v.a in (select/*+ cardinality(c 1) */ c.* from table(sys.odcinumberlist(1,2,3)) c); Plan hash value: 1474391442 --------------------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | --------------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 10 | 100 | 42 (5)| 00:00:01 | | 1 | SORT GROUP BY NOSORT | | 10 | 100 | 42 (5)| 00:00:01 | | 2 | NESTED LOOPS | | 10 | 100 | 41 (3)| 00:00:01 | | 3 | NESTED LOOPS | | 10 | 100 | 41 (3)| 00:00:01 | | 4 | SORT UNIQUE | | 1 | 2 | 29 (0)| 00:00:01 | | 5 | COLLECTION ITERATOR CONSTRUCTOR FETCH| | 1 | 2 | 29 (0)| 00:00:01 | |* 6 | INDEX RANGE SCAN | ITEST | 10 | | 1 (0)| 00:00:01 | | 7 | TABLE ACCESS BY INDEX ROWID | XTEST | 10 | 80 | 11 (0)| 00:00:01 | --------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 6 - access("A"=VALUE(KOKBF$))
select * from vtest t where t.a in (select/*+ cardinality(v 1) */ v.a from json_table('{"a":[1,2,3]}', '$.a[*]' COLUMNS (a int PATH '$')) v); Plan hash value: 2910004067 --------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | --------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 10 | 100 | 42 (5)| 00:00:01 | | 1 | SORT GROUP BY NOSORT | | 10 | 100 | 42 (5)| 00:00:01 | | 2 | NESTED LOOPS | | 10 | 100 | 41 (3)| 00:00:01 | | 3 | NESTED LOOPS | | 10 | 100 | 41 (3)| 00:00:01 | | 4 | SORT UNIQUE | | | | | | | 5 | JSONTABLE EVALUATION | | | | | | |* 6 | INDEX RANGE SCAN | ITEST | 10 | | 1 (0)| 00:00:01 | | 7 | TABLE ACCESS BY INDEX ROWID| XTEST | 10 | 80 | 11 (0)| 00:00:01 | --------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 6 - access("A"="P"."A") select v.* from vtest v where exists(select/*+ cardinality(c 1) */ 1 from xmltable('(1,3)' columns a int path '.') c where c.a = v.a); Plan hash value: 1646016183 --------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | --------------------------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 10 | 100 | 42 (5)| 00:00:01 | | 1 | SORT GROUP BY NOSORT | | 10 | 100 | 42 (5)| 00:00:01 | | 2 | NESTED LOOPS | | 10 | 100 | 41 (3)| 00:00:01 | | 3 | NESTED LOOPS | | 10 | 100 | 41 (3)| 00:00:01 | | 4 | SORT UNIQUE | | 1 | 2 | 29 (0)| 00:00:01 | | 5 | COLLECTION ITERATOR PICKLER FETCH| XQSEQUENCEFROMXMLTYPE | 1 | 2 | 29 (0)| 00:00:01 | |* 6 | INDEX RANGE SCAN | ITEST | 10 | | 1 (0)| 00:00:01 | | 7 | TABLE ACCESS BY INDEX ROWID | XTEST | 10 | 80 | 11 (0)| 00:00:01 | --------------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 6 - access("A"=CAST(TO_NUMBER(SYS_XQ_UPKXML2SQL(SYS_XQEXVAL(VALUE(KOKBF$),0,0,54525952,0),50,1,2)) AS int ))
2. Avoid JPPD using lateral():
select/*+ cardinality(c 1) no_merge(lat) */ distinct lat.* from table(sys.odcinumberlist(1,2,3)) c, lateral(select * from vtest v where v.a = c.column_value) lat; Plan hash value: 18036714 ----------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ----------------------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 10 | 190 | 41 (3)| 00:00:01 | | 1 | HASH UNIQUE | | 10 | 190 | 41 (3)| 00:00:01 | | 2 | NESTED LOOPS | | 10 | 190 | 40 (0)| 00:00:01 | | 3 | COLLECTION ITERATOR CONSTRUCTOR FETCH| | 1 | 2 | 29 (0)| 00:00:01 | | 4 | VIEW | VW_LAT_4DB60E85 | 10 | 170 | 11 (0)| 00:00:01 | | 5 | SORT GROUP BY | | 10 | 80 | 11 (0)| 00:00:01 | | 6 | TABLE ACCESS BY INDEX ROWID BATCHED| XTEST | 10 | 80 | 11 (0)| 00:00:01 | |* 7 | INDEX RANGE SCAN | ITEST | 10 | | 1 (0)| 00:00:01 | ----------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 7 - access("A"=VALUE(KOKBF$))
Let’s see a bit more complex query:
create table xtest1(id primary key, a) as select level,level from dual connect by level<=1000; create table xtest2(a, b, c) as select mod(level,1000),level,rpad('x',100,'x') from dual connect by level<=1e4 / create index itest2 on xtest2(a) / create or replace view vtest2 as select a,count(b) cnt from xtest2 group by a /
select v.* from xtest1 t1, vtest2 v where t1.id in (select/*+ cardinality(c 1) */ * from table(sys.odcinumberlist(1,2,3)) c) and v.a = t1.a; Plan hash value: 4293766070 ----------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ----------------------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | 36 | 80 (3)| 00:00:01 | |* 1 | HASH JOIN | | 1 | 36 | 80 (3)| 00:00:01 | | 2 | JOIN FILTER CREATE | :BF0000 | 1 | 10 | 31 (4)| 00:00:01 | | 3 | NESTED LOOPS | | 1 | 10 | 31 (4)| 00:00:01 | | 4 | NESTED LOOPS | | 1 | 10 | 31 (4)| 00:00:01 | | 5 | SORT UNIQUE | | 1 | 2 | 29 (0)| 00:00:01 | | 6 | COLLECTION ITERATOR CONSTRUCTOR FETCH| | 1 | 2 | 29 (0)| 00:00:01 | |* 7 | INDEX UNIQUE SCAN | SYS_C0026365 | 1 | | 0 (0)| 00:00:01 | | 8 | TABLE ACCESS BY INDEX ROWID | XTEST1 | 1 | 8 | 1 (0)| 00:00:01 | | 9 | VIEW | VTEST2 | 1000 | 26000 | 49 (3)| 00:00:01 | | 10 | HASH GROUP BY | | 1000 | 8000 | 49 (3)| 00:00:01 | | 11 | JOIN FILTER USE | :BF0000 | 10000 | 80000 | 48 (0)| 00:00:01 | |* 12 | TABLE ACCESS FULL | XTEST2 | 10000 | 80000 | 48 (0)| 00:00:01 | ----------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - access("V"."A"="T1"."A") 7 - access("T1"."ID"=VALUE(KOKBF$)) 12 - filter(SYS_OP_BLOOM_FILTER(:BF0000,"A"))
As you see, CVM can’t help in this case, but we can use lateral():
select/*+ no_merge(lat) */ lat.* from xtest1 t1, lateral(select * from vtest2 v where v.a = t1.a) lat where t1.id in (select/*+ cardinality(c 1) */ * from table(sys.odcinumberlist(1,2,3)) c); Plan hash value: 1798023704 ------------------------------------------------------------------------------------------------------------ | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ------------------------------------------------------------------------------------------------------------ | 0 | SELECT STATEMENT | | 10 | 360 | 42 (3)| 00:00:01 | | 1 | NESTED LOOPS | | 10 | 360 | 42 (3)| 00:00:01 | | 2 | NESTED LOOPS | | 1 | 10 | 31 (4)| 00:00:01 | | 3 | SORT UNIQUE | | 1 | 2 | 29 (0)| 00:00:01 | | 4 | COLLECTION ITERATOR CONSTRUCTOR FETCH| | 1 | 2 | 29 (0)| 00:00:01 | | 5 | TABLE ACCESS BY INDEX ROWID | XTEST1 | 1 | 8 | 1 (0)| 00:00:01 | |* 6 | INDEX UNIQUE SCAN | SYS_C0026365 | 1 | | 0 (0)| 00:00:01 | | 7 | VIEW | VW_LAT_A18161FF | 10 | 260 | 11 (0)| 00:00:01 | | 8 | SORT GROUP BY | | 10 | 80 | 11 (0)| 00:00:01 | | 9 | TABLE ACCESS BY INDEX ROWID BATCHED | XTEST2 | 10 | 80 | 11 (0)| 00:00:01 | |* 10 | INDEX RANGE SCAN | ITEST2 | 10 | | 1 (0)| 00:00:01 | ------------------------------------------------------------------------------------------------------------ Predicate Information (identified by operation id): --------------------------------------------------- 6 - access("T1"."ID"=VALUE(KOKBF$)) 10 - access("A"="T1"."A")
There is also another workaround with non-documented “precompute_subquery” hint:
select v.* from xtest1 t1, vtest2 v where t1.id in (select/*+ precompute_subquery */ * from table(sys.odcinumberlist(1,2,3)) c) and v.a = t1.a; Plan hash value: 1964829099 ------------------------------------------------------------------------------------------------ | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ------------------------------------------------------------------------------------------------ | 0 | SELECT STATEMENT | | 30 | 480 | 37 (3)| 00:00:01 | | 1 | HASH GROUP BY | | 30 | 480 | 37 (3)| 00:00:01 | | 2 | NESTED LOOPS | | 30 | 480 | 36 (0)| 00:00:01 | | 3 | NESTED LOOPS | | 30 | 480 | 36 (0)| 00:00:01 | | 4 | INLIST ITERATOR | | | | | | | 5 | TABLE ACCESS BY INDEX ROWID| XTEST1 | 3 | 24 | 3 (0)| 00:00:01 | |* 6 | INDEX UNIQUE SCAN | SYS_C0026365 | 3 | | 2 (0)| 00:00:01 | |* 7 | INDEX RANGE SCAN | ITEST2 | 10 | | 1 (0)| 00:00:01 | | 8 | TABLE ACCESS BY INDEX ROWID | XTEST2 | 10 | 80 | 11 (0)| 00:00:01 | ------------------------------------------------------------------------------------------------ Predicate Information (identified by operation id): --------------------------------------------------- 6 - access("T1"."ID"=1 OR "T1"."ID"=2 OR "T1"."ID"=3) 7 - access("A"="T1"."A")
It can help even in most difficult cases, for example if you can’t rewrite query (in this case you can create sql patch or sql profile with “precompute_subquery”), but I wouldn’t suggest it since “precompute_subquery” is non-documented, it can be used only with simple collections and has limitation in 1000 values.
I’d suggest to use the workaround with lateral, since it’s most reliable and very simple.
Top time-consuming predicates from ASH
Sometimes it might be useful to analyze top time-consuming filter and access predicates from ASH, especially in cases when db load is spread evenly enough by different queries and top segments do not show anything interesting, except usual things like “some tables are requested more often than others”.
Of course, we can start from analysis of SYS.COL_USAGE$: col_usage.sql
col owner format a30 col oname format a30 heading "Object name" col cname format a30 heading "Column name" accept owner_mask prompt "Enter owner mask: "; accept tab_name prompt "Enter tab_name mask: "; accept col_name prompt "Enter col_name mask: "; SELECT a.username as owner ,o.name as oname ,c.name as cname ,u.equality_preds as equality_preds ,u.equijoin_preds as equijoin_preds ,u.nonequijoin_preds as nonequijoin_preds ,u.range_preds as range_preds ,u.like_preds as like_preds ,u.null_preds as null_preds ,to_char(u.timestamp, 'yyyy-mm-dd hh24:mi:ss') when FROM sys.col_usage$ u , sys.obj$ o , sys.col$ c , all_users a WHERE a.user_id = o.owner# AND u.obj# = o.obj# AND u.obj# = c.obj# AND u.intcol# = c.col# AND a.username like upper('&owner_mask') AND o.name like upper('&tab_name') AND c.name like upper('&col_name') ORDER BY a.username, o.name, c.name ; col owner clear; col oname clear; col cname clear; undef tab_name col_name owner_mask;
But it’s not enough, for example it doesn’t show predicates combinations. In this case we can use v$active_session_history and v$sql_plan:
with ash as ( select sql_id ,plan_hash_value ,table_name ,alias ,ACCESS_PREDICATES ,FILTER_PREDICATES ,count(*) cnt from ( select h.sql_id ,h.SQL_PLAN_HASH_VALUE plan_hash_value ,decode(p.OPERATION ,'TABLE ACCESS',p.OBJECT_OWNER||'.'||p.OBJECT_NAME ,(select i.TABLE_OWNER||'.'||i.TABLE_NAME from dba_indexes i where i.OWNER=p.OBJECT_OWNER and i.index_name=p.OBJECT_NAME) ) table_name ,OBJECT_ALIAS ALIAS ,p.ACCESS_PREDICATES ,p.FILTER_PREDICATES -- поля, которые могут быть полезны для анализа в других разрезах: -- ,h.sql_plan_operation -- ,h.sql_plan_options -- ,decode(h.session_state,'ON CPU','ON CPU',h.event) event -- ,h.current_obj# from v$active_session_history h ,v$sql_plan p where h.sql_opname='SELECT' and h.IN_SQL_EXECUTION='Y' and h.sql_plan_operation in ('INDEX','TABLE ACCESS') and p.SQL_ID = h.sql_id and p.CHILD_NUMBER = h.SQL_CHILD_NUMBER and p.ID = h.SQL_PLAN_LINE_ID -- если захотим за последние 3 часа: -- and h.sample_time >= systimestamp - interval '3' hour ) -- если захотим анализируем предикаты только одной таблицы: -- where table_name='&OWNER.&TABNAME' group by sql_id ,plan_hash_value ,table_name ,alias ,ACCESS_PREDICATES ,FILTER_PREDICATES ) ,agg_by_alias as ( select table_name ,regexp_substr(ALIAS,'^[^@]+') ALIAS ,listagg(ACCESS_PREDICATES,' ') within group(order by ACCESS_PREDICATES) ACCESS_PREDICATES ,listagg(FILTER_PREDICATES,' ') within group(order by FILTER_PREDICATES) FILTER_PREDICATES ,sum(cnt) cnt from ash group by sql_id ,plan_hash_value ,table_name ,alias ) ,agg as ( select table_name ,'ALIAS' alias ,replace(access_predicates,'"'||alias||'".','"ALIAS".') access_predicates ,replace(filter_predicates,'"'||alias||'".','"ALIAS".') filter_predicates ,sum(cnt) cnt from agg_by_alias group by table_name ,replace(access_predicates,'"'||alias||'".','"ALIAS".') ,replace(filter_predicates,'"'||alias||'".','"ALIAS".') ) ,cols as ( select table_name ,cols ,access_predicates ,filter_predicates ,sum(cnt)over(partition by table_name,cols) total_by_cols ,cnt from agg ,xmltable( 'string-join(for $c in /ROWSET/ROW/COL order by $c return $c,",")' passing xmltype( cursor( (select distinct nvl( regexp_substr( access_predicates||' '||filter_predicates ,'("'||alias||'"\.|[^.]|^)"([A-Z0-9#_$]+)"([^.]|$)' ,1 ,level ,'i',2 ),' ') col from dual connect by level<=regexp_count( access_predicates||' '||filter_predicates ,'("'||alias||'"\.|[^.]|^)"([A-Z0-9#_$]+)"([^.]|$)' ) ) )) columns cols varchar2(400) path '.' )(+) order by total_by_cols desc, table_name, cnt desc ) select table_name ,cols ,sum(cnt)over(partition by table_name,cols) total_by_cols ,access_predicates ,filter_predicates ,cnt from cols where rownum<=50 order by total_by_cols desc, table_name, cnt desc;
As you can see it shows top 50 predicates and their columns for last 3 hours. Despite the fact that ASH stores just sampled data, its results are representative enough for high-load databases.
Just few details:
- Column “COLS” shows “search columns”, and total_by_cols – their number of occurrences
- I think it’s obvious, that this info is not unambiguous marker of the problem, because for example few full table scans can misrepresent the statistics, so sometimes you will need to analyze such queries deeper (v$sqlstats,dba_hist_sqlstat)
- We need to group data by OBJECT_ALIAS within SQL_ID and plan_hash_value, because in case of index access with lookup to table(“table access by rowid”) some predicates are in the row with index access and others are in the row with table access.
Depending on the needs, we can modify this query to analyze ASH data by different dimensions, for example with additional analysis of partitioning or wait events.
Lateral view decorrelation(VW_DCL) causes wrong results with rownum
Everyone knows that rownum in inline views blocks many query transformations, for example pushing/pulling predicates, scalar subquery unnesting, etc, and many people use it for such purposes as a workaround to avoid unwanted transformations(or even CBO bugs).
If we pull the predicate “column_value = 3” from the following query to higher level
select * from (select * from table(odcinumberlist(1,1,1,2,2,2,3,3,3)) order by 1) where rownum <= 2 and column_value = 3; COLUMN_VALUE ------------ 3 3
we will get different results:
select * from (select * from (select * from table(odcinumberlist(1,1,1,2,2,2,3,3,3)) order by 1) where rownum <= 2 ) where column_value = 3; no rows selected
Doc ID 62340.1
But we recently encountered a bug with it: lateral view with ROWNUM returns wrong results in case of lateral view decorrelation.
Compare results of this query with and without no_decorrelation hint:
with t1(a) as (select * from table(odcinumberlist(1,3))) ,t2(b) as (select * from table(odcinumberlist(1,1,3,3))) ,t(id) as (select * from table(odcinumberlist(1,2,3))) select * from t, lateral(select/*+ no_decorrelate */ rownum rn from t1,t2 where t1.a=t2.b and t1.a = t.id )(+) order by 1,2; ID RN ---------- ---------- 1 1 1 2 2 3 1 3 2 |
with t1(a) as (select * from table(odcinumberlist(1,3))) ,t2(b) as (select * from table(odcinumberlist(1,1,3,3))) ,t(id) as (select * from table(odcinumberlist(1,2,3))) select * from t, lateral(select rownum rn from t1,t2 where t1.a=t2.b and t1.a = t.id )(+) order by 1,2; ID RN ---------- ---------- 1 1 1 2 2 3 3 3 4 |
Of course, we can draw conclusions even from these results: we can see that in case of decorrelation(query with hint) rownum was calculated before the join. But to be sure we can check optimizer’s trace 10053:
******* UNPARSED QUERY IS ******* SELECT VALUE(KOKBF$2) "ID", "VW_DCL_76980902"."RN" "RN" FROM TABLE("ODCINUMBERLIST"(1, 2, 3)) "KOKBF$2", (SELECT ROWNUM "RN_0", VALUE(KOKBF$0) "ITEM_3" FROM TABLE("ODCINUMBERLIST"(1, 3)) "KOKBF$0", TABLE("ODCINUMBERLIST"(1, 1, 3, 3)) "KOKBF$1" WHERE VALUE(KOKBF$0) = VALUE(KOKBF$1) ) "VW_DCL_76980902" WHERE "VW_DCL_76980902"."ITEM_3"(+) = VALUE(KOKBF$2) ORDER BY VALUE(KOKBF$2), "VW_DCL_76980902"."RN" *************************
I’ll modify it a bit just to make it more readable:
we can see that
select * from t, lateral(select rownum rn from t1,t2 where t1.a=t2.b and t1.a = t.id)(+) order by 1,2;
was transformed to
select t.id, dcl.rn from t, (select rownum rn from t1,t2 where t1.a=t2.b) dcl where dcl.a(+) = t.id order by 1,2;
And it confirms that rownum was calculated on the different dataset (t1-t2 join) without join filter by table t.
I created SR with Severity 1 (SR #3-19117219271) more than a month ago, but unfortunately Oracle development doesn’t want to fix this bug and moreover they say that is not a bug. So I think this is a dangerous precedent and probably soon we will not be able to be sure in the calculation of rownum and old fixes…
Top-N again: fetch first N rows only vs rownum
Three interesting myths about rowlimiting clause vs rownum have recently been posted on our Russian forum:
- TopN query with rownum<=N is always faster than "fetch first N rows only" (ie. row_number()over(order by ...)<=N)
- “fetch first N rows only” is always faster than rownum<=N
- “SORT ORDER BY STOPKEY” stores just N top records during sorting, while “WINDOW SORT PUSHED RANK” sorts all input and stores all records sorted in memory.
Interestingly that after Vyacheslav posted first statement as an axiom and someone posted old tests(from 2009) and few people made own tests which showed that “fetch first N rows” is about 2-3 times faster than the query with rownum, the final decision was that “fetch first” is always faster.
First of all I want to show that statement #3 is wrong and “WINDOW SORT PUSHED RANK” with row_number works similarly as “SORT ORDER BY STOPKEY”:
It’s pretty easy to show using sort trace:
Let’s create simple small table Tests1 with 1000 rows where A is in range 1-1000 (just 1 block):
create table test1(a not null, b) as select level, level from dual connect by level<=1000; alter session set max_dump_file_size=unlimited; ALTER SESSION SET EVENTS '10032 trace name context forever, level 10'; ALTER SESSION SET tracefile_identifier = 'rownum'; select * from (select * from test1 order by a) where rownum<=10; ALTER SESSION SET tracefile_identifier = 'rownumber'; select * from test1 order by a fetch first 10 rows only;
And we can see from the trace files that both queries did the same number of comparisons:
----- Current SQL Statement for this session (sql_id=bbg66rcbt76zt) ----- select * from (select * from test1 order by a) where rownum<=10 ---- Sort Statistics ------------------------------ Input records 1000 Output records 10 Total number of comparisons performed 999 Comparisons performed by in-memory sort 999 Total amount of memory used 2048 Uses version 1 sort ---- End of Sort Statistics -----------------------
----- Current SQL Statement for this session (sql_id=duuy4bvaz3d0q) ----- select * from test1 order by a fetch first 10 rows only ---- Sort Statistics ------------------------------ Input records 1000 Output records 10 Total number of comparisons performed 999 Comparisons performed by in-memory sort 999 Total amount of memory used 2048 Uses version 1 sort ---- End of Sort Statistics -----------------------
Ie. each row (except first one) was compared with the biggest value from top 10 values and since they were bigger than top 10 value, oracle doesn’t compare it with other TopN values.
And if we change the order of rows in the table both of these queries will do the same number of comparisons again:
create table test1(a not null, b) as select 1000-level, level from dual connect by level<=1000; alter session set max_dump_file_size=unlimited; ALTER SESSION SET EVENTS '10032 trace name context forever, level 10'; ALTER SESSION SET tracefile_identifier = 'rownum'; select * from (select * from test1 order by a) where rownum<=10; ALTER SESSION SET tracefile_identifier = 'rownumber'; select * from test1 order by a fetch first 10 rows only;
----- Current SQL Statement for this session (sql_id=bbg66rcbt76zt) ----- select * from (select * from test1 order by a) where rownum<=10 ---- Sort Statistics ------------------------------ Input records 1000 Output records 1000 Total number of comparisons performed 4976 Comparisons performed by in-memory sort 4976 Total amount of memory used 2048 Uses version 1 sort ---- End of Sort Statistics -----------------------
----- Current SQL Statement for this session (sql_id=duuy4bvaz3d0q) ----- select * from test1 order by a fetch first 10 rows only ---- Sort Statistics ------------------------------ Input records 1000 Output records 1000 Total number of comparisons performed 4976 Comparisons performed by in-memory sort 4976 Total amount of memory used 2048 Uses version 1 sort ---- End of Sort Statistics -----------------------
We can see that both queries required much more comparisons(4976) here, that’s because each new value is smaller than the biggest value from the topN and even smaller than lowest value, so oracle should get right position for it and it requires 5 comparisons for that (it compares with 10th value, then with 6th, 3rd, 2nd and 1st values from top10). Obviously it makes less comparisons for the first 10 rows.
Now let’s talk about statements #1 and #2:
We know that rownum forces optimizer_mode to switch to “first K rows”, because of the parameter “_optimizer_rownum_pred_based_fkr”
SQL> @param_ rownum NAME VALUE DEFLT TYPE DESCRIPTION ---------------------------------- ------ ------ --------- ------------------------------------------------------ _optimizer_rownum_bind_default 10 TRUE number Default value to use for rownum bind _optimizer_rownum_pred_based_fkr TRUE TRUE boolean enable the use of first K rows due to rownum predicate _px_rownum_pd TRUE TRUE boolean turn off/on parallel rownum pushdown optimization
while fetch first/row_number doesn’t (it will be changed after the patch #22174392) and it leads to the following consequences:
1. first_rows disables serial direct reads optimization(or smartscan on Exadata), that’s why the tests with big tables showed that “fetch first” were much faster than the query with rownum.
So if we set “_serial_direct_read”=always, we get the same performance in both tests (within the margin of error).
2. In cases when index access (index full scan/index range scan) is better, CBO differently calculates the cardinality of underlying INDEX FULL(range) SCAN:
the query with rownum is optimized for first_k_rows and the cardinality of index access is equal to K rows, but CBO doesn’t reduce cardinality for “fetch first”, so the cost of index access is much higher, compare them:
SQL> explain plan for 2 select * 3 from (select * from test order by a,b) 4 where rownum<=10; -------------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | -------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 10 | 390 | 4 (0)| 00:00:01 | |* 1 | COUNT STOPKEY | | | | | | | 2 | VIEW | | 10 | 390 | 4 (0)| 00:00:01 | | 3 | TABLE ACCESS BY INDEX ROWID| TEST | 1000K| 12M| 4 (0)| 00:00:01 | | 4 | INDEX FULL SCAN | IX_TEST_AB | 10 | | 3 (0)| 00:00:01 | -------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(ROWNUM<=10)
SQL> explain plan for 2 select * 3 from test 4 order by a,b 5 fetch first 10 rows only; ----------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time | ----------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 10 | 780 | | 5438 (1)| 00:00:01 | |* 1 | VIEW | | 10 | 780 | | 5438 (1)| 00:00:01 | |* 2 | WINDOW SORT PUSHED RANK| | 1000K| 12M| 22M| 5438 (1)| 00:00:01 | | 3 | TABLE ACCESS FULL | TEST | 1000K| 12M| | 690 (1)| 00:00:01 | ----------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter("from$_subquery$_002"."rowlimit_$$_rownumber"<=10) 2 - filter(ROW_NUMBER() OVER ( ORDER BY "TEST"."A","TEST"."B")<=10)
SQL> explain plan for 2 select/*+ first_rows */ * 3 from test 4 order by a,b 5 fetch first 10 rows only; -------------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | -------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 10 | 780 | 27376 (1)| 00:00:02 | |* 1 | VIEW | | 10 | 780 | 27376 (1)| 00:00:02 | |* 2 | WINDOW NOSORT STOPKEY | | 1000K| 12M| 27376 (1)| 00:00:02 | | 3 | TABLE ACCESS BY INDEX ROWID| TEST | 1000K| 12M| 27376 (1)| 00:00:02 | | 4 | INDEX FULL SCAN | IX_TEST_AB | 1000K| | 2637 (1)| 00:00:01 | -------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter("from$_subquery$_002"."rowlimit_$$_rownumber"<=10) 2 - filter(ROW_NUMBER() OVER ( ORDER BY "TEST"."A","TEST"."B")<=10)
SQL> explain plan for 2 select/*+ index(test (a,b)) */ * 3 from test 4 order by a,b 5 fetch first 10 rows only; -------------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | -------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 10 | 780 | 27376 (1)| 00:00:02 | |* 1 | VIEW | | 10 | 780 | 27376 (1)| 00:00:02 | |* 2 | WINDOW NOSORT STOPKEY | | 1000K| 12M| 27376 (1)| 00:00:02 | | 3 | TABLE ACCESS BY INDEX ROWID| TEST | 1000K| 12M| 27376 (1)| 00:00:02 | | 4 | INDEX FULL SCAN | IX_TEST_AB | 1000K| | 2637 (1)| 00:00:01 | -------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter("from$_subquery$_002"."rowlimit_$$_rownumber"<=10) 2 - filter(ROW_NUMBER() OVER ( ORDER BY "TEST"."A","TEST"."B")<=10)
So in this case we can add hints “first_rows” or “index”, or install the patch #22174392.
ps. I thought to post this note later, since I hadn’t time enough to add other interesting details about the different TopN variants, including “with tie”, rank(), etc, so I’ll post another note with more details later.