Oracle SQL
  • LICENSE

Category Archives: troubleshooting

Reading and analyzing trace file contents using just SQL

Posted on July 11, 2019 by Sayan Malakshinov Posted in 12.2, oracle, trace, troubleshooting Leave a comment

Simple example: tracefiles for the last 5 days:

select fc.* 
from v$diag_trace_file f
     join v$diag_trace_file_contents fc
          on f.adr_home=fc.adr_home
          and f.trace_filename=fc.trace_filename
where f.modify_time >= systimestamp - interval'5' minute
  and fc.timestamp  >= systimestamp - interval'5' minute
  and fc.component_name = 'SQL_Trace'
  --and fc.section_name like 'kests%'
  ;
--or:
select tr.*
  from v$diag_app_trace_file tf,
       v$diag_sql_trace_records tr
 where tf.sql_trace = 'Y'
   and tf.modify_time > systimestamp - interval'5'minute
   and tr.adr_home = tf.adr_home
   and tr.trace_filename = tf.trace_filename
   and tr.timestamp > systimestamp - interval'5'minute;
10046 10053 diag traces troubleshooting

Workarounds for JPPD with view and table(kokbf$), xmltable or json_table functions

Posted on May 30, 2019 by Sayan Malakshinov Posted in CBO, oracle, query optimizing, SQL, troubleshooting Leave a comment

You may know that table() (kokbf$ collection functions), xmltable and json_table functions block Join-Predicate PushDown(JPPD).

Simple example:

DDL

create table xtest(a, b, c) as
select mod(level,1000),level,rpad('x',100,'x')
from dual
connect by level<=1e4
/
create index itest on xtest(a)
/
create or replace view vtest as
select a,count(b) cnt
from xtest
group by a
/
call dbms_stats.gather_table_stats(user,'xtest');
/

[collapse]

select distinct v.* 
from table(sys.odcinumberlist(1,2,3)) c, vtest v
where v.a = c.column_value;

Plan hash value: 699667151

-------------------------------------------------------------------------------------------------
| Id  | Operation                               | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
-------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                        |       |     1 |    19 |    80   (4)| 00:00:01 |
|   1 |  HASH UNIQUE                            |       |     1 |    19 |    80   (4)| 00:00:01 |
|*  2 |   HASH JOIN                             |       |     1 |    19 |    79   (3)| 00:00:01 |
|   3 |    COLLECTION ITERATOR CONSTRUCTOR FETCH|       |     1 |     2 |    29   (0)| 00:00:01 |
|   4 |    VIEW                                 | VTEST |  1000 | 17000 |    49   (3)| 00:00:01 |
|   5 |     HASH GROUP BY                       |       |  1000 |  8000 |    49   (3)| 00:00:01 |
|   6 |      TABLE ACCESS FULL                  | XTEST | 10000 | 80000 |    48   (0)| 00:00:01 |
-------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   2 - access("V"."A"=VALUE(KOKBF$))

same for json_table

select/*+ cardinality(c 1) use_nl(v) push_pred(v) */ * 
from json_table('{"a":[1,2,3]}', '$.a[*]' COLUMNS (a int PATH '$')) c
    ,vtest v
where c.a = v.a;

Plan hash value: 664523328

--------------------------------------------------------------------------------
| Id  | Operation              | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------------
|   0 | SELECT STATEMENT       |       |     1 |    28 |    78   (2)| 00:00:01 |
|   1 |  NESTED LOOPS          |       |     1 |    28 |    78   (2)| 00:00:01 |
|   2 |   JSONTABLE EVALUATION |       |       |       |            |          |
|*  3 |   VIEW                 | VTEST |     1 |    26 |    49   (3)| 00:00:01 |
|   4 |    SORT GROUP BY       |       |  1000 |  8000 |    49   (3)| 00:00:01 |
|   5 |     TABLE ACCESS FULL  | XTEST | 10000 | 80000 |    48   (0)| 00:00:01 |
--------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   3 - filter("V"."A"="P"."A")

Hint Report (identified by operation id / Query Block Name / Object Alias):
Total hints for statement: 1 (U - Unused (1))
---------------------------------------------------------------------------

   1 -  SEL$F534CA49 / V@SEL$1
         U -  push_pred(v)

[collapse]
same for xmltable

select/*+ leading(c v) cardinality(c 1) use_nl(v) push_pred(v) */ v.*
from  xmltable('(1,3)' columns a int path '.') c,vtest v
where  c.a = v.a(+);

Plan hash value: 564839666

------------------------------------------------------------------------------------------------------------
| Id  | Operation                          | Name                  | Rows  | Bytes | Cost (%CPU)| Time     |
------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                   |                       |     1 |    28 |    78   (2)| 00:00:01 |
|   1 |  NESTED LOOPS OUTER                |                       |     1 |    28 |    78   (2)| 00:00:01 |
|   2 |   COLLECTION ITERATOR PICKLER FETCH| XQSEQUENCEFROMXMLTYPE |     1 |     2 |    29   (0)| 00:00:01 |
|*  3 |   VIEW                             | VTEST                 |     1 |    26 |    49   (3)| 00:00:01 |
|   4 |    SORT GROUP BY                   |                       |  1000 |  8000 |    49   (3)| 00:00:01 |
|   5 |     TABLE ACCESS FULL              | XTEST                 | 10000 | 80000 |    48   (0)| 00:00:01 |
------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   3 - filter("V"."A"(+)=CAST(TO_NUMBER(SYS_XQ_UPKXML2SQL(SYS_XQEXVAL(VALUE(KOKBF$),0,0,54525952,0),
              50,1,2)) AS int ))

Hint Report (identified by operation id / Query Block Name / Object Alias):
Total hints for statement: 1 (U - Unused (1))
---------------------------------------------------------------------------

   1 -  SEL$6722A2F6 / V@SEL$1
         U -  push_pred(v)

[collapse]

And compare with this:

create global temporary table temp_collection(a number);

insert into temp_collection select * from table(sys.odcinumberlist(1,2,3));

select/*+ cardinality(c 1) no_merge(v) */
   distinct v.* 
from temp_collection c, vtest v
where v.a = c.a;

Plan hash value: 3561835411

------------------------------------------------------------------------------------------------------------
| Id  | Operation                                | Name            | Rows  | Bytes | Cost (%CPU)| Time     |
------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                         |                 |     1 |    26 |    41   (3)| 00:00:01 |
|   1 |  HASH UNIQUE                             |                 |     1 |    26 |    41   (3)| 00:00:01 |
|   2 |   NESTED LOOPS                           |                 |     1 |    26 |    40   (0)| 00:00:01 |
|   3 |    TABLE ACCESS FULL                     | TEMP_COLLECTION |     1 |    13 |    29   (0)| 00:00:01 |
|   4 |    VIEW PUSHED PREDICATE                 | VTEST           |     1 |    13 |    11   (0)| 00:00:01 |
|*  5 |     FILTER                               |                 |       |       |            |          |
|   6 |      SORT AGGREGATE                      |                 |     1 |     8 |            |          |
|   7 |       TABLE ACCESS BY INDEX ROWID BATCHED| XTEST           |    10 |    80 |    11   (0)| 00:00:01 |
|*  8 |        INDEX RANGE SCAN                  | ITEST           |    10 |       |     1   (0)| 00:00:01 |
------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   5 - filter(COUNT(*)>0)
   8 - access("A"="C"."A")

You can see that JPPD works fine in case of global temporary tables and, obviously, the first workaround is to avoid such functions with complex views.
But in such simple queries you have 2 other simple options:
1. you can avoid JPPD and get optimal plans using CVM(complex view merge) by just simply rewriting the query using IN or EXISTS:

select * 
from vtest v
where v.a in (select/*+ cardinality(c 1) */ c.* from table(sys.odcinumberlist(1,2,3)) c);

Plan hash value: 1474391442

---------------------------------------------------------------------------------------------------
| Id  | Operation                                 | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                          |       |    10 |   100 |    42   (5)| 00:00:01 |
|   1 |  SORT GROUP BY NOSORT                     |       |    10 |   100 |    42   (5)| 00:00:01 |
|   2 |   NESTED LOOPS                            |       |    10 |   100 |    41   (3)| 00:00:01 |
|   3 |    NESTED LOOPS                           |       |    10 |   100 |    41   (3)| 00:00:01 |
|   4 |     SORT UNIQUE                           |       |     1 |     2 |    29   (0)| 00:00:01 |
|   5 |      COLLECTION ITERATOR CONSTRUCTOR FETCH|       |     1 |     2 |    29   (0)| 00:00:01 |
|*  6 |     INDEX RANGE SCAN                      | ITEST |    10 |       |     1   (0)| 00:00:01 |
|   7 |    TABLE ACCESS BY INDEX ROWID            | XTEST |    10 |    80 |    11   (0)| 00:00:01 |
---------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   6 - access("A"=VALUE(KOKBF$))

the same with json_table and xmltable

select * 
from vtest t
where t.a in (select/*+ cardinality(v 1) */ v.a from json_table('{"a":[1,2,3]}', '$.a[*]' COLUMNS (a int PATH '$')) v);

Plan hash value: 2910004067

---------------------------------------------------------------------------------------
| Id  | Operation                     | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT              |       |    10 |   100 |    42   (5)| 00:00:01 |
|   1 |  SORT GROUP BY NOSORT         |       |    10 |   100 |    42   (5)| 00:00:01 |
|   2 |   NESTED LOOPS                |       |    10 |   100 |    41   (3)| 00:00:01 |
|   3 |    NESTED LOOPS               |       |    10 |   100 |    41   (3)| 00:00:01 |
|   4 |     SORT UNIQUE               |       |       |       |            |          |
|   5 |      JSONTABLE EVALUATION     |       |       |       |            |          |
|*  6 |     INDEX RANGE SCAN          | ITEST |    10 |       |     1   (0)| 00:00:01 |
|   7 |    TABLE ACCESS BY INDEX ROWID| XTEST |    10 |    80 |    11   (0)| 00:00:01 |
---------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   6 - access("A"="P"."A")

select v.*
from  vtest v
where exists(select/*+ cardinality(c 1) */ 1 from xmltable('(1,3)' columns a int path '.') c where c.a = v.a);

Plan hash value: 1646016183

---------------------------------------------------------------------------------------------------------------
| Id  | Operation                             | Name                  | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                      |                       |    10 |   100 |    42   (5)| 00:00:01 |
|   1 |  SORT GROUP BY NOSORT                 |                       |    10 |   100 |    42   (5)| 00:00:01 |
|   2 |   NESTED LOOPS                        |                       |    10 |   100 |    41   (3)| 00:00:01 |
|   3 |    NESTED LOOPS                       |                       |    10 |   100 |    41   (3)| 00:00:01 |
|   4 |     SORT UNIQUE                       |                       |     1 |     2 |    29   (0)| 00:00:01 |
|   5 |      COLLECTION ITERATOR PICKLER FETCH| XQSEQUENCEFROMXMLTYPE |     1 |     2 |    29   (0)| 00:00:01 |
|*  6 |     INDEX RANGE SCAN                  | ITEST                 |    10 |       |     1   (0)| 00:00:01 |
|   7 |    TABLE ACCESS BY INDEX ROWID        | XTEST                 |    10 |    80 |    11   (0)| 00:00:01 |
---------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   6 - access("A"=CAST(TO_NUMBER(SYS_XQ_UPKXML2SQL(SYS_XQEXVAL(VALUE(KOKBF$),0,0,54525952,0),50,1,2)) AS int ))

[collapse]

2. Avoid JPPD using lateral():

select/*+ cardinality(c 1) no_merge(lat) */
   distinct lat.* 
from table(sys.odcinumberlist(1,2,3)) c, 
     lateral(select * from vtest v where v.a = c.column_value) lat;

Plan hash value: 18036714

-----------------------------------------------------------------------------------------------------------
| Id  | Operation                               | Name            | Rows  | Bytes | Cost (%CPU)| Time     |
-----------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                        |                 |    10 |   190 |    41   (3)| 00:00:01 |
|   1 |  HASH UNIQUE                            |                 |    10 |   190 |    41   (3)| 00:00:01 |
|   2 |   NESTED LOOPS                          |                 |    10 |   190 |    40   (0)| 00:00:01 |
|   3 |    COLLECTION ITERATOR CONSTRUCTOR FETCH|                 |     1 |     2 |    29   (0)| 00:00:01 |
|   4 |    VIEW                                 | VW_LAT_4DB60E85 |    10 |   170 |    11   (0)| 00:00:01 |
|   5 |     SORT GROUP BY                       |                 |    10 |    80 |    11   (0)| 00:00:01 |
|   6 |      TABLE ACCESS BY INDEX ROWID BATCHED| XTEST           |    10 |    80 |    11   (0)| 00:00:01 |
|*  7 |       INDEX RANGE SCAN                  | ITEST           |    10 |       |     1   (0)| 00:00:01 |
-----------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   7 - access("A"=VALUE(KOKBF$))

Let’s see a bit more complex query:

Test tables 2

create table xtest1(id primary key, a) as
  select level,level from dual connect by level<=1000;

create table xtest2(a, b, c) as
   select mod(level,1000),level,rpad('x',100,'x')
   from dual
   connect by level<=1e4
/
create index itest2 on xtest2(a)
/
create or replace view vtest2 as
select a,count(b) cnt
from xtest2
group by a
/

[collapse]

select v.* 
from xtest1 t1,
     vtest2 v
where t1.id in (select/*+ cardinality(c 1) */ * from table(sys.odcinumberlist(1,2,3)) c)
  and v.a = t1.a;

Plan hash value: 4293766070

-----------------------------------------------------------------------------------------------------------
| Id  | Operation                                  | Name         | Rows  | Bytes | Cost (%CPU)| Time     |
-----------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                           |              |     1 |    36 |    80   (3)| 00:00:01 |
|*  1 |  HASH JOIN                                 |              |     1 |    36 |    80   (3)| 00:00:01 |
|   2 |   JOIN FILTER CREATE                       | :BF0000      |     1 |    10 |    31   (4)| 00:00:01 |
|   3 |    NESTED LOOPS                            |              |     1 |    10 |    31   (4)| 00:00:01 |
|   4 |     NESTED LOOPS                           |              |     1 |    10 |    31   (4)| 00:00:01 |
|   5 |      SORT UNIQUE                           |              |     1 |     2 |    29   (0)| 00:00:01 |
|   6 |       COLLECTION ITERATOR CONSTRUCTOR FETCH|              |     1 |     2 |    29   (0)| 00:00:01 |
|*  7 |      INDEX UNIQUE SCAN                     | SYS_C0026365 |     1 |       |     0   (0)| 00:00:01 |
|   8 |     TABLE ACCESS BY INDEX ROWID            | XTEST1       |     1 |     8 |     1   (0)| 00:00:01 |
|   9 |   VIEW                                     | VTEST2       |  1000 | 26000 |    49   (3)| 00:00:01 |
|  10 |    HASH GROUP BY                           |              |  1000 |  8000 |    49   (3)| 00:00:01 |
|  11 |     JOIN FILTER USE                        | :BF0000      | 10000 | 80000 |    48   (0)| 00:00:01 |
|* 12 |      TABLE ACCESS FULL                     | XTEST2       | 10000 | 80000 |    48   (0)| 00:00:01 |
-----------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - access("V"."A"="T1"."A")
   7 - access("T1"."ID"=VALUE(KOKBF$))
  12 - filter(SYS_OP_BLOOM_FILTER(:BF0000,"A"))

As you see, CVM can’t help in this case, but we can use lateral():

select/*+ no_merge(lat) */ lat.* 
from xtest1 t1,
     lateral(select * from vtest2 v where v.a = t1.a) lat
where t1.id in (select/*+ cardinality(c 1) */ * from table(sys.odcinumberlist(1,2,3)) c);

Plan hash value: 1798023704

------------------------------------------------------------------------------------------------------------
| Id  | Operation                                | Name            | Rows  | Bytes | Cost (%CPU)| Time     |
------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                         |                 |    10 |   360 |    42   (3)| 00:00:01 |
|   1 |  NESTED LOOPS                            |                 |    10 |   360 |    42   (3)| 00:00:01 |
|   2 |   NESTED LOOPS                           |                 |     1 |    10 |    31   (4)| 00:00:01 |
|   3 |    SORT UNIQUE                           |                 |     1 |     2 |    29   (0)| 00:00:01 |
|   4 |     COLLECTION ITERATOR CONSTRUCTOR FETCH|                 |     1 |     2 |    29   (0)| 00:00:01 |
|   5 |    TABLE ACCESS BY INDEX ROWID           | XTEST1          |     1 |     8 |     1   (0)| 00:00:01 |
|*  6 |     INDEX UNIQUE SCAN                    | SYS_C0026365    |     1 |       |     0   (0)| 00:00:01 |
|   7 |   VIEW                                   | VW_LAT_A18161FF |    10 |   260 |    11   (0)| 00:00:01 |
|   8 |    SORT GROUP BY                         |                 |    10 |    80 |    11   (0)| 00:00:01 |
|   9 |     TABLE ACCESS BY INDEX ROWID BATCHED  | XTEST2          |    10 |    80 |    11   (0)| 00:00:01 |
|* 10 |      INDEX RANGE SCAN                    | ITEST2          |    10 |       |     1   (0)| 00:00:01 |
------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   6 - access("T1"."ID"=VALUE(KOKBF$))
  10 - access("A"="T1"."A")

There is also another workaround with non-documented “precompute_subquery” hint:

select v.* 
from xtest1 t1,
     vtest2 v 
where t1.id in (select/*+ precompute_subquery */ * from table(sys.odcinumberlist(1,2,3)) c)
and v.a = t1.a;

Plan hash value: 1964829099

------------------------------------------------------------------------------------------------
| Id  | Operation                       | Name         | Rows  | Bytes | Cost (%CPU)| Time     |
------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                |              |    30 |   480 |    37   (3)| 00:00:01 |
|   1 |  HASH GROUP BY                  |              |    30 |   480 |    37   (3)| 00:00:01 |
|   2 |   NESTED LOOPS                  |              |    30 |   480 |    36   (0)| 00:00:01 |
|   3 |    NESTED LOOPS                 |              |    30 |   480 |    36   (0)| 00:00:01 |
|   4 |     INLIST ITERATOR             |              |       |       |            |          |
|   5 |      TABLE ACCESS BY INDEX ROWID| XTEST1       |     3 |    24 |     3   (0)| 00:00:01 |
|*  6 |       INDEX UNIQUE SCAN         | SYS_C0026365 |     3 |       |     2   (0)| 00:00:01 |
|*  7 |     INDEX RANGE SCAN            | ITEST2       |    10 |       |     1   (0)| 00:00:01 |
|   8 |    TABLE ACCESS BY INDEX ROWID  | XTEST2       |    10 |    80 |    11   (0)| 00:00:01 |
------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   6 - access("T1"."ID"=1 OR "T1"."ID"=2 OR "T1"."ID"=3)
   7 - access("A"="T1"."A")

It can help even in most difficult cases, for example if you can’t rewrite query (in this case you can create sql patch or sql profile with “precompute_subquery”), but I wouldn’t suggest it since “precompute_subquery” is non-documented, it can be used only with simple collections and has limitation in 1000 values.
I’d suggest to use the workaround with lateral, since it’s most reliable and very simple.

cbo CVM JPPD kokbf$ oracle undocumented behaviour pipelined functions precompute_subquery query optimization troubleshooting undocumented oracle

Top time-consuming predicates from ASH

Posted on May 13, 2019 by Sayan Malakshinov Posted in oracle, query optimizing, SQL, statistics, troubleshooting Leave a comment

Sometimes it might be useful to analyze top time-consuming filter and access predicates from ASH, especially in cases when db load is spread evenly enough by different queries and top segments do not show anything interesting, except usual things like “some tables are requested more often than others”.
Of course, we can start from analysis of SYS.COL_USAGE$: col_usage.sql

col_usage.sql

col owner format a30
col oname format a30 heading "Object name"
col cname format a30 heading "Column name"
accept owner_mask prompt "Enter owner mask: ";
accept tab_name prompt "Enter tab_name mask: ";
accept col_name prompt "Enter col_name mask: ";

SELECT a.username              as owner
      ,o.name                  as oname
      ,c.name                  as cname
      ,u.equality_preds        as equality_preds
      ,u.equijoin_preds        as equijoin_preds
      ,u.nonequijoin_preds     as nonequijoin_preds
      ,u.range_preds           as range_preds
      ,u.like_preds            as like_preds
      ,u.null_preds            as null_preds
      ,to_char(u.timestamp, 'yyyy-mm-dd hh24:mi:ss') when
FROM   
       sys.col_usage$ u
     , sys.obj$       o
     , sys.col$       c
     , all_users      a
WHERE  a.user_id = o.owner#
AND    u.obj#    = o.obj#
AND    u.obj#    = c.obj#
AND    u.intcol# = c.col#
AND    a.username like upper('&owner_mask')
AND    o.name     like upper('&tab_name')
AND    c.name     like upper('&col_name')
ORDER  BY a.username, o.name, c.name
;
col owner clear;
col oname clear;
col cname clear;
undef tab_name col_name owner_mask;

[collapse]

But it’s not enough, for example it doesn’t show predicates combinations. In this case we can use v$active_session_history and v$sql_plan:

Top 50 predicates

with 
 ash as (
   select 
      sql_id
     ,plan_hash_value
     ,table_name
     ,alias
     ,ACCESS_PREDICATES
     ,FILTER_PREDICATES
     ,count(*) cnt
   from (
      select 
         h.sql_id
        ,h.SQL_PLAN_HASH_VALUE plan_hash_value
        ,decode(p.OPERATION
                 ,'TABLE ACCESS',p.OBJECT_OWNER||'.'||p.OBJECT_NAME
                 ,(select i.TABLE_OWNER||'.'||i.TABLE_NAME from dba_indexes i where i.OWNER=p.OBJECT_OWNER and i.index_name=p.OBJECT_NAME)
               ) table_name
        ,OBJECT_ALIAS ALIAS
        ,p.ACCESS_PREDICATES
        ,p.FILTER_PREDICATES
      -- поля, которые могут быть полезны для анализа в других разрезах:
      --  ,h.sql_plan_operation
      --  ,h.sql_plan_options
      --  ,decode(h.session_state,'ON CPU','ON CPU',h.event) event
      --  ,h.current_obj#
      from v$active_session_history h
          ,v$sql_plan p
      where h.sql_opname='SELECT'
        and h.IN_SQL_EXECUTION='Y'
        and h.sql_plan_operation in ('INDEX','TABLE ACCESS')
        and p.SQL_ID = h.sql_id
        and p.CHILD_NUMBER = h.SQL_CHILD_NUMBER
        and p.ID = h.SQL_PLAN_LINE_ID
        -- если захотим за последние 3 часа:
        -- and h.sample_time >= systimestamp - interval '3' hour
   )
   -- если захотим анализируем предикаты только одной таблицы:
   -- where table_name='&OWNER.&TABNAME'
   group by 
      sql_id
     ,plan_hash_value
     ,table_name
     ,alias
     ,ACCESS_PREDICATES
     ,FILTER_PREDICATES
)
,agg_by_alias as (
   select
      table_name
     ,regexp_substr(ALIAS,'^[^@]+') ALIAS
     ,listagg(ACCESS_PREDICATES,' ') within group(order by ACCESS_PREDICATES) ACCESS_PREDICATES
     ,listagg(FILTER_PREDICATES,' ') within group(order by FILTER_PREDICATES) FILTER_PREDICATES
     ,sum(cnt) cnt
   from ash
   group by 
      sql_id
     ,plan_hash_value
     ,table_name
     ,alias
)
,agg as (
   select 
       table_name
      ,'ALIAS' alias
      ,replace(access_predicates,'"'||alias||'".','"ALIAS".') access_predicates
      ,replace(filter_predicates,'"'||alias||'".','"ALIAS".') filter_predicates
      ,sum(cnt) cnt
   from agg_by_alias 
   group by 
       table_name
      ,replace(access_predicates,'"'||alias||'".','"ALIAS".') 
      ,replace(filter_predicates,'"'||alias||'".','"ALIAS".') 
)
,cols as (
   select 
       table_name
      ,cols
      ,access_predicates
      ,filter_predicates
      ,sum(cnt)over(partition by table_name,cols) total_by_cols
      ,cnt
   from agg
       ,xmltable(
          'string-join(for $c in /ROWSET/ROW/COL order by $c return $c,",")'
          passing 
             xmltype(
                cursor(
                   (select distinct
                       nvl(
                       regexp_substr(
                          access_predicates||' '||filter_predicates
                         ,'("'||alias||'"\.|[^.]|^)"([A-Z0-9#_$]+)"([^.]|$)'
                         ,1
                         ,level
                         ,'i',2
                       ),' ')
                       col
                    from dual
                    connect by 
                       level<=regexp_count(
                                 access_predicates||' '||filter_predicates
                                ,'("'||alias||'"\.|[^.]|^)"([A-Z0-9#_$]+)"([^.]|$)'
                              )
                   )
               ))
          columns cols varchar2(400) path '.'
       )(+)
   order by total_by_cols desc, table_name, cnt desc
)
select 
   table_name
  ,cols
  ,sum(cnt)over(partition by table_name,cols) total_by_cols
  ,access_predicates
  ,filter_predicates
  ,cnt
from cols
where rownum<=50
order by total_by_cols desc, table_name, cnt desc;

[collapse]

As you can see it shows top 50 predicates and their columns for last 3 hours. Despite the fact that ASH stores just sampled data, its results are representative enough for high-load databases.
Just few details:

  • Column “COLS” shows “search columns”, and total_by_cols – their number of occurrences
  • I think it’s obvious, that this info is not unambiguous marker of the problem, because for example few full table scans can misrepresent the statistics, so sometimes you will need to analyze such queries deeper (v$sqlstats,dba_hist_sqlstat)
  • We need to group data by OBJECT_ALIAS within SQL_ID and plan_hash_value, because in case of index access with lookup to table(“table access by rowid”) some predicates are in the row with index access and others are in the row with table access.

Depending on the needs, we can modify this query to analyze ASH data by different dimensions, for example with additional analysis of partitioning or wait events.

oracle query optimization SQL*Plus troubleshooting

Correct syntax for the table_stats hint

Posted on April 16, 2019 by Roger MacNicol Posted in adaptive serial direct path reads, CBO, hints, oracle, SmartScan, trace, troubleshooting, undocumented 1 Comment

A friend contacted me to ask why they were having problems using the table_stats hint to influence optimizer decision making and also to influence the decision to use direct read or buffer cache scan so this is just a quick blog post to clarify the syntax as it is not well documented.

table_stats(<table_name> <method> {<keyword>=<value>} )

Method is one of: DEFAULT, SET, SCALE, SAMPLE

Keyword is one of: BLOCKS, ROWS, ROW_LENGTH
Continue reading→
oracle query optimization Roger MacNicol SmartScan troubleshooting

Another bug with lateral

Posted on February 16, 2019 by Sayan Malakshinov Posted in 12c, bug, CBO, curious, oracle, troubleshooting Leave a comment

Compare the results of the following query with the clause “fetch first 2 rows only”

with 
 t1(a) as (select * from table(odcinumberlist(1,3)))
,t2(a,b) as (select * from table(ku$_objnumpairlist(
                                 sys.ku$_objnumpair(1,1),
                                 sys.ku$_objnumpair(1,2),
                                 sys.ku$_objnumpair(1,3),
                                 sys.ku$_objnumpair(3,1),
                                 sys.ku$_objnumpair(3,2),
                                 sys.ku$_objnumpair(3,3)
                                 )))
,t(id) as (select * from table(odcinumberlist(1,2,3,4,5,6,7)))
select
  *
from t,
     lateral(select t1.a,t2.b
             from t1,t2 
             where t1.a = t2.a 
               and t1.a = t.id
             order by t2.b
             fetch first 2 rows only
             )(+)
order by id;

        ID          A          B
---------- ---------- ----------
         1          1          1
         1          3          1
         2          1          1
         2          3          1
         3          1          1
         3          3          1
         4          1          1
         4          3          1
         5          1          1
         5          3          1
         6          1          1
         6          3          1
         7          1          1
         7          3          1

14 rows selected.

with this one (i’ve just commented out the line with “fetch-first-rows-only”:

with 
 t1(a) as (select * from table(odcinumberlist(1,3)))
,t2(a,b) as (select * from table(ku$_objnumpairlist(
                                 sys.ku$_objnumpair(1,1),
                                 sys.ku$_objnumpair(1,2),
                                 sys.ku$_objnumpair(1,3),
                                 sys.ku$_objnumpair(3,1),
                                 sys.ku$_objnumpair(3,2),
                                 sys.ku$_objnumpair(3,3)
                                 )))
,t(id) as (select * from table(odcinumberlist(1,2,3,4,5,6,7)))
select
  *
from t,
     lateral(select t1.a,t2.b
             from t1,t2 
             where t1.a = t2.a 
               and t1.a = t.id
             order by t2.b
--             fetch first 2 rows only
             )(+)
order by id;

        ID          A          B
---------- ---------- ----------
         1          1          2
         1          1          3
         1          1          1
         2
         3          3          2
         3          3          1
         3          3          3
         4
         5
         6
         7

11 rows selected.

Obviously, the first query should return less rows than second one, but we can see that it returned more rows and join predicate “and t1.a = t.id” was ignored, because A and B are not empty and “A” is not equal to t.ID.

bug cbo fetch-first-rows-only lateral

Lateral view decorrelation(VW_DCL) causes wrong results with rownum

Posted on February 16, 2019 by Sayan Malakshinov Posted in 12c, bug, CBO, oracle, query optimizing, rownum, troubleshooting 2 Comments

Everyone knows that rownum in inline views blocks many query transformations, for example pushing/pulling predicates, scalar subquery unnesting, etc, and many people use it for such purposes as a workaround to avoid unwanted transformations(or even CBO bugs).

Obviously, the main reason of that is different calculation of rownum:

If we pull the predicate “column_value = 3” from the following query to higher level

select * 
from (select * from table(odcinumberlist(1,1,1,2,2,2,3,3,3)) order by 1)
where rownum <= 2
  and column_value = 3;


COLUMN_VALUE
------------
           3
           3

we will get different results:

select * 
from (select *
      from (select * from table(odcinumberlist(1,1,1,2,2,2,3,3,3)) order by 1)
      where rownum <= 2
     )
where column_value = 3;

no rows selected

Doc ID 62340.1

[collapse]

But we recently encountered a bug with it: lateral view with ROWNUM returns wrong results in case of lateral view decorrelation.
Compare results of this query with and without no_decorrelation hint:

with 
 t1(a) as (select * from table(odcinumberlist(1,3)))
,t2(b) as (select * from table(odcinumberlist(1,1,3,3)))
,t(id) as (select * from table(odcinumberlist(1,2,3)))
select
  *
from t,
     lateral(select/*+ no_decorrelate */ rownum rn 
             from t1,t2 
             where t1.a=t2.b and t1.a = t.id
            )(+)
order by 1,2;

        ID         RN
---------- ----------
         1          1
         1          2
         2
         3          1
         3          2
with 
 t1(a) as (select * from table(odcinumberlist(1,3)))
,t2(b) as (select * from table(odcinumberlist(1,1,3,3)))
,t(id) as (select * from table(odcinumberlist(1,2,3)))
select
  *
from t,
     lateral(select rownum rn 
             from t1,t2 
             where t1.a=t2.b and t1.a = t.id
            )(+)
order by 1,2;

        ID         RN
---------- ----------
         1          1
         1          2
         2
         3          3
         3          4

Of course, we can draw conclusions even from these results: we can see that in case of decorrelation(query with hint) rownum was calculated before the join. But to be sure we can check optimizer’s trace 10053:

Final query after transformations:

******* UNPARSED QUERY IS *******
SELECT VALUE(KOKBF$2) "ID", "VW_DCL_76980902"."RN" "RN"
  FROM TABLE("ODCINUMBERLIST"(1, 2, 3)) "KOKBF$2",
       (SELECT ROWNUM "RN_0", VALUE(KOKBF$0) "ITEM_3"
          FROM TABLE("ODCINUMBERLIST"(1, 3)) "KOKBF$0",
               TABLE("ODCINUMBERLIST"(1, 1, 3, 3)) "KOKBF$1"
         WHERE VALUE(KOKBF$0) = VALUE(KOKBF$1)
        ) "VW_DCL_76980902"
 WHERE "VW_DCL_76980902"."ITEM_3"(+) = VALUE(KOKBF$2)
 ORDER BY VALUE(KOKBF$2), "VW_DCL_76980902"."RN"

*************************

[collapse]

I’ll modify it a bit just to make it more readable:
we can see that

select
  *
from t,
     lateral(select rownum rn 
             from t1,t2 
             where t1.a=t2.b and t1.a = t.id)(+)
order by 1,2;

was transformed to

select
  t.id, dcl.rn
from t,
     (select rownum rn 
      from t1,t2 
      where t1.a=t2.b) dcl
where dcl.a(+) = t.id
order by 1,2;

And it confirms that rownum was calculated on the different dataset (t1-t2 join) without join filter by table t.
I created SR with Severity 1 (SR #3-19117219271) more than a month ago, but unfortunately Oracle development doesn’t want to fix this bug and moreover they say that is not a bug. So I think this is a dangerous precedent and probably soon we will not be able to be sure in the calculation of rownum and old fixes…

bug cbo lateral query optimization troubleshooting

Top-N again: fetch first N rows only vs rownum

Posted on December 30, 2018 by Sayan Malakshinov Posted in adaptive serial direct path reads, CBO, oracle, query optimizing, SQL, troubleshooting Leave a comment

Three interesting myths about rowlimiting clause vs rownum have recently been posted on our Russian forum:

  1. TopN query with rownum<=N is always faster than "fetch first N rows only" (ie. row_number()over(order by ...)<=N)
  2. “fetch first N rows only” is always faster than rownum<=N
  3. “SORT ORDER BY STOPKEY” stores just N top records during sorting, while “WINDOW SORT PUSHED RANK” sorts all input and stores all records sorted in memory.

Interestingly that after Vyacheslav posted first statement as an axiom and someone posted old tests(from 2009) and few people made own tests which showed that “fetch first N rows” is about 2-3 times faster than the query with rownum, the final decision was that “fetch first” is always faster.

First of all I want to show that statement #3 is wrong and “WINDOW SORT PUSHED RANK” with row_number works similarly as “SORT ORDER BY STOPKEY”:
It’s pretty easy to show using sort trace:
Let’s create simple small table Tests1 with 1000 rows where A is in range 1-1000 (just 1 block):

create table test1(a not null, b) as
  select level, level from dual connect by level<=1000;

alter session set max_dump_file_size=unlimited;
ALTER SESSION SET EVENTS '10032 trace name context forever, level 10';

ALTER SESSION SET tracefile_identifier = 'rownum';
select * from (select * from test1 order by a) where rownum<=10;

ALTER SESSION SET tracefile_identifier = 'rownumber';
select * from test1 order by a fetch first 10 rows only;

And we can see from the trace files that both queries did the same number of comparisons:

rownum:

----- Current SQL Statement for this session (sql_id=bbg66rcbt76zt) -----
select * from (select * from test1 order by a) where rownum<=10

---- Sort Statistics ------------------------------
Input records                             1000
Output records                            10
Total number of comparisons performed     999
  Comparisons performed by in-memory sort 999
Total amount of memory used               2048
Uses version 1 sort
---- End of Sort Statistics -----------------------

[collapse]
row_number

----- Current SQL Statement for this session (sql_id=duuy4bvaz3d0q) -----
select * from test1 order by a fetch first 10 rows only

---- Sort Statistics ------------------------------
Input records                             1000
Output records                            10
Total number of comparisons performed     999
  Comparisons performed by in-memory sort 999
Total amount of memory used               2048
Uses version 1 sort
---- End of Sort Statistics -----------------------

[collapse]

Ie. each row (except first one) was compared with the biggest value from top 10 values and since they were bigger than top 10 value, oracle doesn’t compare it with other TopN values.

And if we change the order of rows in the table both of these queries will do the same number of comparisons again:

from 999 to 0

create table test1(a not null, b) as
  select 1000-level, level from dual connect by level<=1000;

alter session set max_dump_file_size=unlimited;
ALTER SESSION SET EVENTS '10032 trace name context forever, level 10';

ALTER SESSION SET tracefile_identifier = 'rownum';
select * from (select * from test1 order by a) where rownum<=10;


ALTER SESSION SET tracefile_identifier = 'rownumber';
select * from test1 order by a fetch first 10 rows only;

[collapse]
rownum

----- Current SQL Statement for this session (sql_id=bbg66rcbt76zt) -----
select * from (select * from test1 order by a) where rownum<=10

---- Sort Statistics ------------------------------
Input records                             1000
Output records                            1000
Total number of comparisons performed     4976
  Comparisons performed by in-memory sort 4976
Total amount of memory used               2048
Uses version 1 sort
---- End of Sort Statistics -----------------------

[collapse]
row_number

----- Current SQL Statement for this session (sql_id=duuy4bvaz3d0q) -----
select * from test1 order by a fetch first 10 rows only

---- Sort Statistics ------------------------------
Input records                             1000
Output records                            1000
Total number of comparisons performed     4976
  Comparisons performed by in-memory sort 4976
Total amount of memory used               2048
Uses version 1 sort
---- End of Sort Statistics -----------------------

[collapse]

We can see that both queries required much more comparisons(4976) here, that’s because each new value is smaller than the biggest value from the topN and even smaller than lowest value, so oracle should get right position for it and it requires 5 comparisons for that (it compares with 10th value, then with 6th, 3rd, 2nd and 1st values from top10). Obviously it makes less comparisons for the first 10 rows.

Now let’s talk about statements #1 and #2:
We know that rownum forces optimizer_mode to switch to “first K rows”, because of the parameter “_optimizer_rownum_pred_based_fkr”

SQL> @param_ rownum

NAME                               VALUE  DEFLT  TYPE      DESCRIPTION
---------------------------------- ------ ------ --------- ------------------------------------------------------
_optimizer_rownum_bind_default     10     TRUE   number    Default value to use for rownum bind
_optimizer_rownum_pred_based_fkr   TRUE   TRUE   boolean   enable the use of first K rows due to rownum predicate
_px_rownum_pd                      TRUE   TRUE   boolean   turn off/on parallel rownum pushdown optimization

while fetch first/row_number doesn’t (it will be changed after the patch #22174392) and it leads to the following consequences:
1. first_rows disables serial direct reads optimization(or smartscan on Exadata), that’s why the tests with big tables showed that “fetch first” were much faster than the query with rownum.
So if we set “_serial_direct_read”=always, we get the same performance in both tests (within the margin of error).

2. In cases when index access (index full scan/index range scan) is better, CBO differently calculates the cardinality of underlying INDEX FULL(range) SCAN:
the query with rownum is optimized for first_k_rows and the cardinality of index access is equal to K rows, but CBO doesn’t reduce cardinality for “fetch first”, so the cost of index access is much higher, compare them:

rownum

SQL> explain plan for
  2  select *
  3  from (select * from test order by a,b)
  4  where rownum<=10;

--------------------------------------------------------------------------------------------
| Id  | Operation                     | Name       | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT              |            |    10 |   390 |     4   (0)| 00:00:01 |
|*  1 |  COUNT STOPKEY                |            |       |       |            |          |
|   2 |   VIEW                        |            |    10 |   390 |     4   (0)| 00:00:01 |
|   3 |    TABLE ACCESS BY INDEX ROWID| TEST       |  1000K|    12M|     4   (0)| 00:00:01 |
|   4 |     INDEX FULL SCAN           | IX_TEST_AB |    10 |       |     3   (0)| 00:00:01 |
--------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - filter(ROWNUM<=10)

[collapse]
fetch first

SQL> explain plan for
  2  select *
  3  from test
  4  order by a,b
  5  fetch first 10 rows only;

-----------------------------------------------------------------------------------------
| Id  | Operation                | Name | Rows  | Bytes |TempSpc| Cost (%CPU)| Time     |
-----------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT         |      |    10 |   780 |       |  5438   (1)| 00:00:01 |
|*  1 |  VIEW                    |      |    10 |   780 |       |  5438   (1)| 00:00:01 |
|*  2 |   WINDOW SORT PUSHED RANK|      |  1000K|    12M|    22M|  5438   (1)| 00:00:01 |
|   3 |    TABLE ACCESS FULL     | TEST |  1000K|    12M|       |   690   (1)| 00:00:01 |
-----------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - filter("from$_subquery$_002"."rowlimit_$$_rownumber"<=10)
   2 - filter(ROW_NUMBER() OVER ( ORDER BY "TEST"."A","TEST"."B")<=10)

[collapse]
fetch first + first_rows

SQL> explain plan for
  2  select/*+ first_rows */ *
  3  from test
  4  order by a,b
  5  fetch first 10 rows only;

--------------------------------------------------------------------------------------------
| Id  | Operation                     | Name       | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT              |            |    10 |   780 | 27376   (1)| 00:00:02 |
|*  1 |  VIEW                         |            |    10 |   780 | 27376   (1)| 00:00:02 |
|*  2 |   WINDOW NOSORT STOPKEY       |            |  1000K|    12M| 27376   (1)| 00:00:02 |
|   3 |    TABLE ACCESS BY INDEX ROWID| TEST       |  1000K|    12M| 27376   (1)| 00:00:02 |
|   4 |     INDEX FULL SCAN           | IX_TEST_AB |  1000K|       |  2637   (1)| 00:00:01 |
--------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - filter("from$_subquery$_002"."rowlimit_$$_rownumber"<=10)
   2 - filter(ROW_NUMBER() OVER ( ORDER BY "TEST"."A","TEST"."B")<=10)

[collapse]
fetch first + index

SQL> explain plan for
  2  select/*+ index(test (a,b)) */ *
  3  from test
  4  order by a,b
  5  fetch first 10 rows only;

--------------------------------------------------------------------------------------------
| Id  | Operation                     | Name       | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT              |            |    10 |   780 | 27376   (1)| 00:00:02 |
|*  1 |  VIEW                         |            |    10 |   780 | 27376   (1)| 00:00:02 |
|*  2 |   WINDOW NOSORT STOPKEY       |            |  1000K|    12M| 27376   (1)| 00:00:02 |
|   3 |    TABLE ACCESS BY INDEX ROWID| TEST       |  1000K|    12M| 27376   (1)| 00:00:02 |
|   4 |     INDEX FULL SCAN           | IX_TEST_AB |  1000K|       |  2637   (1)| 00:00:01 |
--------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - filter("from$_subquery$_002"."rowlimit_$$_rownumber"<=10)
   2 - filter(ROW_NUMBER() OVER ( ORDER BY "TEST"."A","TEST"."B")<=10)

[collapse]

So in this case we can add hints “first_rows” or “index”, or install the patch #22174392.

ps. I thought to post this note later, since I hadn’t time enough to add other interesting details about the different TopN variants, including “with tie”, rank(), etc, so I’ll post another note with more details later.

cbo direct path reads oracle query optimization

How to tell if the Exadata column cache is fully loaded

Posted on January 23, 2018 by Roger MacNicol Posted in oracle, SmartScan, statistics, troubleshooting 1 Comment

When a background activity is happening on the cell you typically can’t use RDBMS v$ views to monitor it in the same way. One such question is how to tell if a segment is fully loaded in the Exadata column cache since this does not appear in the equivalent In-Memory v$ views.

When a segment is scanned by Smart Scan sufficiently often to be eligible the AUTOKEEP pool (typically that means at least twice an hour), the eligible 1MB chunks are written to flash in 12.1.0.2 style format, and put on a background queue. Lower priority tasks pick up the queued 1MB 12.1.0.2 format chunks from the flash cache, run them though the In-Memory loader, and rewrite the pure columnar representation in place of the old 12.1.0.2 style column cache chunks.

The easiest way that I know of to tell when this completes is to monitor that background activity is to use the following query until it shows zero:

select name, sum(value) value from (
      select extractvalue(value(t),'/stat/@name') name,
            extractvalue(value(t),'/stat') value
      from v$cell_state cs,
           table(xmlsequence(extract(xmltype(cs.statistics_value),
                                     '//stats[@type="columnarcache"]/stat'))) t
     where statistics_type='CELL')
     where name in ('outstanding_imcpop_requests')
     group by name;

oracle Roger MacNicol SmartScan v$cell_state

“Collection iterator pickler fetch”: pipelined vs simple table functions

Posted on December 13, 2017 by Sayan Malakshinov Posted in oracle, PL/SQL, PL/SQL optimization, query optimizing, SQL, troubleshooting 2 Comments

Alex R recently discovered interesting thing: in SQL pipelined functions work much faster than simple non-pipelined table functions, so if you already have simple non-pipelined table function and want to get its results in sql (select * from table(fff)), it’s much better to create another pipelined function which will get and return its results through PIPE ROW().

A bit more details:

Assume we need to return collection “RESULT” from PL/SQL function into SQL query “select * from table(function_F(…))”.
If we create 2 similar functions: pipelined f_pipe and simple non-pipelined f_non_pipe,

create or replace function f_pipe(n int) return tt_id_value pipelined 
as
  result tt_id_value;
begin
  ...
  for i in 1..n loop
    pipe row (result(i));
  end loop;
end f_pipe;
/
create or replace function f_non_pipe(n int) return tt_id_value 
as
  result tt_id_value;
begin
  ...
  return result;
end f_non_pipe;
/

Full functions definitions

create or replace type to_id_value as object (id int, value int)
/
create or replace type tt_id_value as table of to_id_value
/
create or replace function f_pipe(n int) return tt_id_value pipelined 
as
  result tt_id_value;
  
  procedure gen is
  begin
     result:=tt_id_value();
     result.extend(n);
     for i in 1..n loop
        result(i):=to_id_value(i, 1);
     end loop;
  end;    
begin
  gen();
  for i in 1..n loop
    pipe row (result(i));
  end loop;
end f_pipe;
/
create or replace function f_non_pipe(n int) return tt_id_value 
as
  result tt_id_value;
  
  procedure gen is
  begin
     result:=tt_id_value();
     result.extend(n);
     for i in 1..n loop
        result(i):=to_id_value(i, 1);
     end loop;
  end;    
begin
  gen();
  return result;
end f_non_pipe;
/
create or replace function f_pipe_for_nonpipe(n int) return tt_id_value pipelined 
as
  result tt_id_value;
begin
  result:=f_non_pipe(n);
  for i in 1..result.count loop
    pipe row (result(i));
  end loop;
end;
/
create or replace function f_udf_pipe(n int) return tt_id_value pipelined 
as
  result tt_id_value;
  
  procedure gen is
  begin
     result:=tt_id_value();
     result.extend(n);
     for i in 1..n loop
        result(i):=to_id_value(i, 1);
     end loop;
  end;    
begin
  gen();
  for i in 1..n loop
    pipe row (result(i));
  end loop;
end;
/
create or replace function f_udf_non_pipe(n int) return tt_id_value 
as
  result tt_id_value;
  
  procedure gen is
  begin
     result:=tt_id_value();
     result.extend(n);
     for i in 1..n loop
        result(i):=to_id_value(i, 1);
     end loop;
  end;    
begin
  gen();
  return result;
end;
/

[collapse]
Test queries

set echo on feed only timing on;
--alter session set optimizer_adaptive_plans=false;
--alter session set "_optimizer_use_feedback"=false;

select sum(id * value) s from table(f_pipe(&1));
select sum(id * value) s from table(f_non_pipe(&1));
select sum(id * value) s from table(f_pipe_for_nonpipe(&1));
select sum(id * value) s from table(f_udf_pipe(&1));
select sum(id * value) s from table(f_udf_non_pipe(&1));
with function f_inline_non_pipe(n int) return tt_id_value 
as
  result tt_id_value;
begin
     result:=tt_id_value();
     result.extend(n);
     for i in 1..n loop
        result(i):=to_id_value(i, 1);
     end loop;
     return result;
end;
select sum(id * value) s from table(f_inline_non_pipe(&1));
/
set timing off echo off feed on;

[collapse]

we’ll find that the function with simple “return result” works at least twice slower than pipelined function:

Function 1 000 000 elements 100 000 elements
F_PIPE 2.46 0.20
F_NON_PIPE 4.39 0.44
F_PIPE_FOR_NONPIPE 2.61 0.26
F_UDF_PIPE 2.06 0.20
F_UDF_NON_PIPE 4.46 0.44

I was really surprised that even “COLLECTION ITERATOR PICKLER FETCH” with F_PIPE_FOR_NONPIPE that gets result of F_NON_PIPE and returns it through PIPE ROW() works almost twice faster than F_NON_PIPE, so I decided to analyze it using stapflame by Frits Hoogland.

I added “dbms_lock.sleep(1)” into both of these function after collection generation, to compare the difference only between “pipe row” in loop and “return result”:

Modified functions

create or replace function f_pipe(n int) return tt_id_value pipelined 
as
  result tt_id_value;
  
  procedure gen is
  begin
     result:=tt_id_value();
     result.extend(n);
     for i in 1..n loop
        result(i):=to_id_value(i, 1);
     end loop;
  end;    
begin
  gen();
  dbms_lock.sleep(1);
  for i in 1..n loop
    pipe row (result(i));
  end loop;
end f_pipe;
/
create or replace function f_non_pipe(n int) return tt_id_value 
as
  result tt_id_value;
  
  procedure gen is
  begin
     result:=tt_id_value();
     result.extend(n);
     for i in 1..n loop
        result(i):=to_id_value(i, 1);
     end loop;
  end;    
begin
  gen();
  dbms_lock.sleep(1);
  return result;
end f_non_pipe;
/

[collapse]

And stapflame showed that almost all overhead was consumed by the function “kgmpoa_Assign_Out_Arguments”:

I don’t know what this function is doing exactly, but we can see that oracle assign collection a bit later.
From other functions in this stack(pmucpkl, kopp2isize, kopp2colsize, kopp2atsize(attribute?), kopuadt) I suspect that is some type of preprocessiong of return arguments.
What do you think about it?

Full stapflame output:
stapflame_nonpipe
stapflame_pipe

oracle pipelined functions pl/sql pl/sql functions pl/sql optimization

When bloggers get it wrong – part 2

Posted on May 4, 2017 by Roger MacNicol Posted in adaptive serial direct path reads, oracle, SmartScan, trace, troubleshooting 1 Comment

In Part 2 we are going to look at making use of the trace events that show what was discussed in Part 1. 
NB: Oracle no longer adds new numeric trace events, going forward new trace events use the Unified Tracing Service whose grammer is much simpler. The elements we need are:

trace[[x.]y] disk = [ lowest | low | medium | high | highest ]

For example Table Scan tracing is in the DATA hierachy:

[1] DATA
[2] KDS    “Kernel Data Scan”
[3] KDSFTS  “Full Table Scan”
[3] KDSRID  “RowID”

‘trace[KDSFTS] disk low’ – only trace full table scans
‘trace[KDSRID] disk low’ – only trace fetch by rowid
‘trace[KDS.*] disk low’ – trace both table scans and fetch by rowid
NB: don’t use ‘lowest’ with KDS – it is used for memory tracing only

Tracing Full Table Scans: KDSFTS

At the beginning of a granule we see if it is possible to use Turbo Scan (which is a prerequisite for using Exadata Smart Scan) and the data object number being scanned:

Continue reading→
abtc direct path reads oracle Roger MacNicol SmartScan
photo Sayan Malakshinov

Oracle ACE Pro Oracle ACE Pro

DEVVYOracle Database Developer Choice Award winner

Oracle performance tuning expert

UK / Cambridge

LinkedIn   Twitter
sayan@orasql.org

Recent Posts

  • CBO and Partial indexing
  • Slow index access “COL=:N” where :N is NULL
  • Where does the commit or rollback happen in PL/SQL code?
  • :1 and SP2-0553: Illegal variable name “1”.
  • ORA exceptions that can’t be caught by exception handler

Recent Comments

  • Oracle SGA 값을 증가 시킬 때 발생 장애 원인 – DBA의 정석 on Example of controlling “direct path reads” decision through SQL profile hints (index_stats/table_stats)
  • Oracle SQL | Oracle diagnostic events — Cheat sheet on Where does the commit or rollback happen in PL/SQL code?
  • Functions & Subqueries | Oracle Scratchpad on Deterministic function vs scalar subquery caching. Part 3
  • Materialized views state turns into compilation_error after refresh - kranar.top - Answering users questions... on Friday prank: select from join join join
  • Exadata Catalogue | Oracle Scratchpad on When bloggers get it wrong – part 1
  • Exadata Catalogue | Oracle Scratchpad on Serial Scans failing to offload
  • lateral join – decorrelation gone wrong – svenweller on Lateral view decorrelation(VW_DCL) causes wrong results with rownum
  • 255 column catalogue | Oracle Scratchpad on Intra-block row chaining optimization in 12.2
  • 255 column catalogue | Oracle Scratchpad on row pieces, 255 columns, intra-block row chaining in details
  • opt_estimate catalogue | Oracle Scratchpad on Correct syntax for the table_stats hint

Blogroll

  • Alex Fatkulin
  • Alexander Anokhin
  • Andrey Nikolaev
  • Charles Hooper
  • Christian Antognini
  • Coskan Gundogar
  • David Fitzjarrell
  • Igor Usoltsev
  • Jonathan Lewis
  • Karl Arao
  • Mark Bobak
  • Martin Bach
  • Martin Berger
  • Neil Chandler
  • Randolf Geist
  • Richard Foote
  • Riyaj Shamsudeen
  • Tanel Poder
  • Timur Akhmadeev
  • Valentin Nikotin

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org
  • Prev
  • 1
  • 2
  • 3
  • Next
©Sayan Malakshinov. Oracle SQL