Oracle SQL
  • LICENSE

Tag Archives: undocumented oracle

CBO and Partial indexing

Posted on November 2, 2022 by Sayan Malakshinov Posted in bug, CBO, oracle, query optimizing, SQL, trace, troubleshooting 2,537 Page views Leave a comment

Oracle 12c introduced Partial indexing, which works well for simple partitioned tables with literals. However, it has several significant issues:

Continue reading→
cbo oracle partial indexes partial indexing query optimization troubleshooting undocumented oracle

Where does the commit or rollback happen in PL/SQL code?

Posted on September 12, 2021 by Sayan Malakshinov Posted in diagnostic event 10046, oracle, PL/SQL, trace, troubleshooting, undocumented 2,181 Page views 1 Comment

One of the easiest ways is to use diagnostic events:

alter session set events 'sql_trace {callstack: fname xctend} errorstack(1)';
Image
Image
oracle pl/sql troubleshooting undocumented oracle

ORA exceptions that can’t be caught by exception handler

Posted on August 12, 2021 by Sayan Malakshinov Posted in curious, Funny, oracle, PL/SQL, SQL, troubleshooting 2,338 Page views Leave a comment

I know 2 “special” exceptions that can’t be processed in exception handler:

  • “ORA-01013: user requested cancel of current operation”
  • “ORA-03113: end-of-file on communication channel”
  • and + “ORA-00028: your session has been killed” from Matthias Rogel

Tanel Poder described the first one (ORA-01013) in details here: https://tanelpoder.com/2010/02/17/how-to-cancel-a-query-running-in-another-session/ where Tanel shows that this error is based on SIGURG signal (kill -URG):

-- 1013 will not be caught:
declare
 e exception;
 pragma exception_init(e,-1013);
begin
  raise e;
exception when others then dbms_output.put_line('caught');
end;
/

declare
*
ERROR at line 1:
ORA-01013: user requested cancel of current operation
ORA-06512: at line 5
Continue reading→
exceptions ora-errors oracle oracle undocumented behaviour pl/sql troubleshooting undocumented oracle

Laterals: is (+) documented for laterals?

Posted on July 9, 2019 by Sayan Malakshinov Posted in bug, CBO, documentation, oracle 1,538 Page views Leave a comment

I know this syntax for a long time, since when lateral() was not documented yet, but recently I found a bug: the following query successfully returns 1 row:

with a as (select level a from dual connect by level<10)
    ,b as (select 0 b from dual)
    ,c as (select 0 c from dual)
select
  *
from a,
     lateral(select * from b where a.a=b.b)(+) bb
     --left outer join c on c.c=bb.b
where a=1;

         A          B
---------- ----------
         1

But doesn’t if we uncomment “left join”:

with a as (select level a from dual connect by level<10)
    ,b as (select 0 b from dual)
    ,c as (select 0 c from dual)
select
  *
from a,
     lateral(select * from b where a.a=b.b)(+) bb
     left outer join c on c.c=bb.b
where a=1;

no rows selected

And outer apply works fine:

with a as (select level a from dual connect by level<10)
    ,b as (select 0 b from dual)
    ,c as (select 0 c from dual)
select
  *
from a
     outer apply (select * from b where a.a=b.b) bb
     left outer join c on c.c=bb.b
where a=1;

         A          B          C
---------- ---------- ----------
         1

oracle oracle undocumented behaviour sql undocumented oracle

Workarounds for JPPD with view and table(kokbf$), xmltable or json_table functions

Posted on May 30, 2019 by Sayan Malakshinov Posted in CBO, oracle, query optimizing, SQL, troubleshooting 2,150 Page views Leave a comment

You may know that table() (kokbf$ collection functions), xmltable and json_table functions block Join-Predicate PushDown(JPPD).

Simple example:

DDL

[sourcecode language=”sql”]
create table xtest(a, b, c) as
select mod(level,1000),level,rpad(‘x’,100,’x’)
from dual
connect by level<=1e4
/
create index itest on xtest(a)
/
create or replace view vtest as
select a,count(b) cnt
from xtest
group by a
/
call dbms_stats.gather_table_stats(user,’xtest’);
/
[/sourcecode]

[collapse]

select distinct v.* 
from table(sys.odcinumberlist(1,2,3)) c, vtest v
where v.a = c.column_value;

Plan hash value: 699667151

-------------------------------------------------------------------------------------------------
| Id  | Operation                               | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
-------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                        |       |     1 |    19 |    80   (4)| 00:00:01 |
|   1 |  HASH UNIQUE                            |       |     1 |    19 |    80   (4)| 00:00:01 |
|*  2 |   HASH JOIN                             |       |     1 |    19 |    79   (3)| 00:00:01 |
|   3 |    COLLECTION ITERATOR CONSTRUCTOR FETCH|       |     1 |     2 |    29   (0)| 00:00:01 |
|   4 |    VIEW                                 | VTEST |  1000 | 17000 |    49   (3)| 00:00:01 |
|   5 |     HASH GROUP BY                       |       |  1000 |  8000 |    49   (3)| 00:00:01 |
|   6 |      TABLE ACCESS FULL                  | XTEST | 10000 | 80000 |    48   (0)| 00:00:01 |
-------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   2 - access("V"."A"=VALUE(KOKBF$))

same for json_table

[sourcecode language=”sql”]
select/*+ cardinality(c 1) use_nl(v) push_pred(v) */ *
from json_table(‘{"a":[1,2,3]}’, ‘$.a[*]’ COLUMNS (a int PATH ‘$’)) c
,vtest v
where c.a = v.a;

Plan hash value: 664523328

——————————————————————————–
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
——————————————————————————–
| 0 | SELECT STATEMENT | | 1 | 28 | 78 (2)| 00:00:01 |
| 1 | NESTED LOOPS | | 1 | 28 | 78 (2)| 00:00:01 |
| 2 | JSONTABLE EVALUATION | | | | | |
|* 3 | VIEW | VTEST | 1 | 26 | 49 (3)| 00:00:01 |
| 4 | SORT GROUP BY | | 1000 | 8000 | 49 (3)| 00:00:01 |
| 5 | TABLE ACCESS FULL | XTEST | 10000 | 80000 | 48 (0)| 00:00:01 |
——————————————————————————–

Predicate Information (identified by operation id):
—————————————————

3 – filter("V"."A"="P"."A")

Hint Report (identified by operation id / Query Block Name / Object Alias):
Total hints for statement: 1 (U – Unused (1))
—————————————————————————

1 – SEL$F534CA49 / V@SEL$1
U – push_pred(v)
[/sourcecode]

[collapse]
same for xmltable

[sourcecode language=”sql”]
select/*+ leading(c v) cardinality(c 1) use_nl(v) push_pred(v) */ v.*
from xmltable(‘(1,3)’ columns a int path ‘.’) c,vtest v
where c.a = v.a(+);

Plan hash value: 564839666

————————————————————————————————————
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
————————————————————————————————————
| 0 | SELECT STATEMENT | | 1 | 28 | 78 (2)| 00:00:01 |
| 1 | NESTED LOOPS OUTER | | 1 | 28 | 78 (2)| 00:00:01 |
| 2 | COLLECTION ITERATOR PICKLER FETCH| XQSEQUENCEFROMXMLTYPE | 1 | 2 | 29 (0)| 00:00:01 |
|* 3 | VIEW | VTEST | 1 | 26 | 49 (3)| 00:00:01 |
| 4 | SORT GROUP BY | | 1000 | 8000 | 49 (3)| 00:00:01 |
| 5 | TABLE ACCESS FULL | XTEST | 10000 | 80000 | 48 (0)| 00:00:01 |
————————————————————————————————————

Predicate Information (identified by operation id):
—————————————————

3 – filter("V"."A"(+)=CAST(TO_NUMBER(SYS_XQ_UPKXML2SQL(SYS_XQEXVAL(VALUE(KOKBF$),0,0,54525952,0),
50,1,2)) AS int ))

Hint Report (identified by operation id / Query Block Name / Object Alias):
Total hints for statement: 1 (U – Unused (1))
—————————————————————————

1 – SEL$6722A2F6 / V@SEL$1
U – push_pred(v)
[/sourcecode]

[collapse]

And compare with this:

create global temporary table temp_collection(a number);

insert into temp_collection select * from table(sys.odcinumberlist(1,2,3));

select/*+ cardinality(c 1) no_merge(v) */
   distinct v.* 
from temp_collection c, vtest v
where v.a = c.a;

Plan hash value: 3561835411

------------------------------------------------------------------------------------------------------------
| Id  | Operation                                | Name            | Rows  | Bytes | Cost (%CPU)| Time     |
------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                         |                 |     1 |    26 |    41   (3)| 00:00:01 |
|   1 |  HASH UNIQUE                             |                 |     1 |    26 |    41   (3)| 00:00:01 |
|   2 |   NESTED LOOPS                           |                 |     1 |    26 |    40   (0)| 00:00:01 |
|   3 |    TABLE ACCESS FULL                     | TEMP_COLLECTION |     1 |    13 |    29   (0)| 00:00:01 |
|   4 |    VIEW PUSHED PREDICATE                 | VTEST           |     1 |    13 |    11   (0)| 00:00:01 |
|*  5 |     FILTER                               |                 |       |       |            |          |
|   6 |      SORT AGGREGATE                      |                 |     1 |     8 |            |          |
|   7 |       TABLE ACCESS BY INDEX ROWID BATCHED| XTEST           |    10 |    80 |    11   (0)| 00:00:01 |
|*  8 |        INDEX RANGE SCAN                  | ITEST           |    10 |       |     1   (0)| 00:00:01 |
------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   5 - filter(COUNT(*)>0)
   8 - access("A"="C"."A")

You can see that JPPD works fine in case of global temporary tables and, obviously, the first workaround is to avoid such functions with complex views.
But in such simple queries you have 2 other simple options:
1. you can avoid JPPD and get optimal plans using CVM(complex view merge) by just simply rewriting the query using IN or EXISTS:

select * 
from vtest v
where v.a in (select/*+ cardinality(c 1) */ c.* from table(sys.odcinumberlist(1,2,3)) c);

Plan hash value: 1474391442

---------------------------------------------------------------------------------------------------
| Id  | Operation                                 | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                          |       |    10 |   100 |    42   (5)| 00:00:01 |
|   1 |  SORT GROUP BY NOSORT                     |       |    10 |   100 |    42   (5)| 00:00:01 |
|   2 |   NESTED LOOPS                            |       |    10 |   100 |    41   (3)| 00:00:01 |
|   3 |    NESTED LOOPS                           |       |    10 |   100 |    41   (3)| 00:00:01 |
|   4 |     SORT UNIQUE                           |       |     1 |     2 |    29   (0)| 00:00:01 |
|   5 |      COLLECTION ITERATOR CONSTRUCTOR FETCH|       |     1 |     2 |    29   (0)| 00:00:01 |
|*  6 |     INDEX RANGE SCAN                      | ITEST |    10 |       |     1   (0)| 00:00:01 |
|   7 |    TABLE ACCESS BY INDEX ROWID            | XTEST |    10 |    80 |    11   (0)| 00:00:01 |
---------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   6 - access("A"=VALUE(KOKBF$))

the same with json_table and xmltable

[sourcecode language=”sql”]
select *
from vtest t
where t.a in (select/*+ cardinality(v 1) */ v.a from json_table(‘{"a":[1,2,3]}’, ‘$.a[*]’ COLUMNS (a int PATH ‘$’)) v);

Plan hash value: 2910004067

—————————————————————————————
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
—————————————————————————————
| 0 | SELECT STATEMENT | | 10 | 100 | 42 (5)| 00:00:01 |
| 1 | SORT GROUP BY NOSORT | | 10 | 100 | 42 (5)| 00:00:01 |
| 2 | NESTED LOOPS | | 10 | 100 | 41 (3)| 00:00:01 |
| 3 | NESTED LOOPS | | 10 | 100 | 41 (3)| 00:00:01 |
| 4 | SORT UNIQUE | | | | | |
| 5 | JSONTABLE EVALUATION | | | | | |
|* 6 | INDEX RANGE SCAN | ITEST | 10 | | 1 (0)| 00:00:01 |
| 7 | TABLE ACCESS BY INDEX ROWID| XTEST | 10 | 80 | 11 (0)| 00:00:01 |
—————————————————————————————

Predicate Information (identified by operation id):
—————————————————

6 – access("A"="P"."A")

select v.*
from vtest v
where exists(select/*+ cardinality(c 1) */ 1 from xmltable(‘(1,3)’ columns a int path ‘.’) c where c.a = v.a);

Plan hash value: 1646016183

—————————————————————————————————————
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
—————————————————————————————————————
| 0 | SELECT STATEMENT | | 10 | 100 | 42 (5)| 00:00:01 |
| 1 | SORT GROUP BY NOSORT | | 10 | 100 | 42 (5)| 00:00:01 |
| 2 | NESTED LOOPS | | 10 | 100 | 41 (3)| 00:00:01 |
| 3 | NESTED LOOPS | | 10 | 100 | 41 (3)| 00:00:01 |
| 4 | SORT UNIQUE | | 1 | 2 | 29 (0)| 00:00:01 |
| 5 | COLLECTION ITERATOR PICKLER FETCH| XQSEQUENCEFROMXMLTYPE | 1 | 2 | 29 (0)| 00:00:01 |
|* 6 | INDEX RANGE SCAN | ITEST | 10 | | 1 (0)| 00:00:01 |
| 7 | TABLE ACCESS BY INDEX ROWID | XTEST | 10 | 80 | 11 (0)| 00:00:01 |
—————————————————————————————————————

Predicate Information (identified by operation id):
—————————————————

6 – access("A"=CAST(TO_NUMBER(SYS_XQ_UPKXML2SQL(SYS_XQEXVAL(VALUE(KOKBF$),0,0,54525952,0),50,1,2)) AS int ))
[/sourcecode]

[collapse]

2. Avoid JPPD using lateral():

select/*+ cardinality(c 1) no_merge(lat) */
   distinct lat.* 
from table(sys.odcinumberlist(1,2,3)) c, 
     lateral(select * from vtest v where v.a = c.column_value) lat;

Plan hash value: 18036714

-----------------------------------------------------------------------------------------------------------
| Id  | Operation                               | Name            | Rows  | Bytes | Cost (%CPU)| Time     |
-----------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                        |                 |    10 |   190 |    41   (3)| 00:00:01 |
|   1 |  HASH UNIQUE                            |                 |    10 |   190 |    41   (3)| 00:00:01 |
|   2 |   NESTED LOOPS                          |                 |    10 |   190 |    40   (0)| 00:00:01 |
|   3 |    COLLECTION ITERATOR CONSTRUCTOR FETCH|                 |     1 |     2 |    29   (0)| 00:00:01 |
|   4 |    VIEW                                 | VW_LAT_4DB60E85 |    10 |   170 |    11   (0)| 00:00:01 |
|   5 |     SORT GROUP BY                       |                 |    10 |    80 |    11   (0)| 00:00:01 |
|   6 |      TABLE ACCESS BY INDEX ROWID BATCHED| XTEST           |    10 |    80 |    11   (0)| 00:00:01 |
|*  7 |       INDEX RANGE SCAN                  | ITEST           |    10 |       |     1   (0)| 00:00:01 |
-----------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   7 - access("A"=VALUE(KOKBF$))

Let’s see a bit more complex query:

Test tables 2

[sourcecode language=”sql”]
create table xtest1(id primary key, a) as
select level,level from dual connect by level<=1000;

create table xtest2(a, b, c) as
select mod(level,1000),level,rpad(‘x’,100,’x’)
from dual
connect by level<=1e4
/
create index itest2 on xtest2(a)
/
create or replace view vtest2 as
select a,count(b) cnt
from xtest2
group by a
/
[/sourcecode]

[collapse]

select v.* 
from xtest1 t1,
     vtest2 v
where t1.id in (select/*+ cardinality(c 1) */ * from table(sys.odcinumberlist(1,2,3)) c)
  and v.a = t1.a;

Plan hash value: 4293766070

-----------------------------------------------------------------------------------------------------------
| Id  | Operation                                  | Name         | Rows  | Bytes | Cost (%CPU)| Time     |
-----------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                           |              |     1 |    36 |    80   (3)| 00:00:01 |
|*  1 |  HASH JOIN                                 |              |     1 |    36 |    80   (3)| 00:00:01 |
|   2 |   JOIN FILTER CREATE                       | :BF0000      |     1 |    10 |    31   (4)| 00:00:01 |
|   3 |    NESTED LOOPS                            |              |     1 |    10 |    31   (4)| 00:00:01 |
|   4 |     NESTED LOOPS                           |              |     1 |    10 |    31   (4)| 00:00:01 |
|   5 |      SORT UNIQUE                           |              |     1 |     2 |    29   (0)| 00:00:01 |
|   6 |       COLLECTION ITERATOR CONSTRUCTOR FETCH|              |     1 |     2 |    29   (0)| 00:00:01 |
|*  7 |      INDEX UNIQUE SCAN                     | SYS_C0026365 |     1 |       |     0   (0)| 00:00:01 |
|   8 |     TABLE ACCESS BY INDEX ROWID            | XTEST1       |     1 |     8 |     1   (0)| 00:00:01 |
|   9 |   VIEW                                     | VTEST2       |  1000 | 26000 |    49   (3)| 00:00:01 |
|  10 |    HASH GROUP BY                           |              |  1000 |  8000 |    49   (3)| 00:00:01 |
|  11 |     JOIN FILTER USE                        | :BF0000      | 10000 | 80000 |    48   (0)| 00:00:01 |
|* 12 |      TABLE ACCESS FULL                     | XTEST2       | 10000 | 80000 |    48   (0)| 00:00:01 |
-----------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - access("V"."A"="T1"."A")
   7 - access("T1"."ID"=VALUE(KOKBF$))
  12 - filter(SYS_OP_BLOOM_FILTER(:BF0000,"A"))

As you see, CVM can’t help in this case, but we can use lateral():

select/*+ no_merge(lat) */ lat.* 
from xtest1 t1,
     lateral(select * from vtest2 v where v.a = t1.a) lat
where t1.id in (select/*+ cardinality(c 1) */ * from table(sys.odcinumberlist(1,2,3)) c);

Plan hash value: 1798023704

------------------------------------------------------------------------------------------------------------
| Id  | Operation                                | Name            | Rows  | Bytes | Cost (%CPU)| Time     |
------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                         |                 |    10 |   360 |    42   (3)| 00:00:01 |
|   1 |  NESTED LOOPS                            |                 |    10 |   360 |    42   (3)| 00:00:01 |
|   2 |   NESTED LOOPS                           |                 |     1 |    10 |    31   (4)| 00:00:01 |
|   3 |    SORT UNIQUE                           |                 |     1 |     2 |    29   (0)| 00:00:01 |
|   4 |     COLLECTION ITERATOR CONSTRUCTOR FETCH|                 |     1 |     2 |    29   (0)| 00:00:01 |
|   5 |    TABLE ACCESS BY INDEX ROWID           | XTEST1          |     1 |     8 |     1   (0)| 00:00:01 |
|*  6 |     INDEX UNIQUE SCAN                    | SYS_C0026365    |     1 |       |     0   (0)| 00:00:01 |
|   7 |   VIEW                                   | VW_LAT_A18161FF |    10 |   260 |    11   (0)| 00:00:01 |
|   8 |    SORT GROUP BY                         |                 |    10 |    80 |    11   (0)| 00:00:01 |
|   9 |     TABLE ACCESS BY INDEX ROWID BATCHED  | XTEST2          |    10 |    80 |    11   (0)| 00:00:01 |
|* 10 |      INDEX RANGE SCAN                    | ITEST2          |    10 |       |     1   (0)| 00:00:01 |
------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   6 - access("T1"."ID"=VALUE(KOKBF$))
  10 - access("A"="T1"."A")

There is also another workaround with non-documented “precompute_subquery” hint:

select v.* 
from xtest1 t1,
     vtest2 v 
where t1.id in (select/*+ precompute_subquery */ * from table(sys.odcinumberlist(1,2,3)) c)
and v.a = t1.a;

Plan hash value: 1964829099

------------------------------------------------------------------------------------------------
| Id  | Operation                       | Name         | Rows  | Bytes | Cost (%CPU)| Time     |
------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                |              |    30 |   480 |    37   (3)| 00:00:01 |
|   1 |  HASH GROUP BY                  |              |    30 |   480 |    37   (3)| 00:00:01 |
|   2 |   NESTED LOOPS                  |              |    30 |   480 |    36   (0)| 00:00:01 |
|   3 |    NESTED LOOPS                 |              |    30 |   480 |    36   (0)| 00:00:01 |
|   4 |     INLIST ITERATOR             |              |       |       |            |          |
|   5 |      TABLE ACCESS BY INDEX ROWID| XTEST1       |     3 |    24 |     3   (0)| 00:00:01 |
|*  6 |       INDEX UNIQUE SCAN         | SYS_C0026365 |     3 |       |     2   (0)| 00:00:01 |
|*  7 |     INDEX RANGE SCAN            | ITEST2       |    10 |       |     1   (0)| 00:00:01 |
|   8 |    TABLE ACCESS BY INDEX ROWID  | XTEST2       |    10 |    80 |    11   (0)| 00:00:01 |
------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   6 - access("T1"."ID"=1 OR "T1"."ID"=2 OR "T1"."ID"=3)
   7 - access("A"="T1"."A")

It can help even in most difficult cases, for example if you can’t rewrite query (in this case you can create sql patch or sql profile with “precompute_subquery”), but I wouldn’t suggest it since “precompute_subquery” is non-documented, it can be used only with simple collections and has limitation in 1000 values.
I’d suggest to use the workaround with lateral, since it’s most reliable and very simple.

cbo CVM JPPD kokbf$ oracle undocumented behaviour pipelined functions precompute_subquery query optimization troubleshooting undocumented oracle

v$sql_hint.target_level

Posted on May 28, 2019 by Sayan Malakshinov Posted in CBO, oracle, SQL, undocumented 1,995 Page views Leave a comment

Today I wanted to give a link to the description of v$sql_hint.target_level to show that no_parallel can be specified for statement or object, and though it’s pretty obvious, but surprisingly I haven’t found any articles or posts about it, so this short post describes it.
v$sql_hint.target_level is a bitset, where
1st bit set to 1 means that the hint can be specified on statement level,
2nd – on query block level,
3rd – on object level,
4th – on join level(for multiple objects).
Short example:

   select name,sql_feature
          ,class,inverse
          ,version,version_outline
          ,target_level
         ,decode(bitand(target_level,1),0,'no','yes') Statement_level
         ,decode(bitand(target_level,2),0,'no','yes') Query_block_level
         ,decode(bitand(target_level,4),0,'no','yes') Object_level
         ,decode(bitand(target_level,8),0,'no','yes') Join_level
   from v$sql_hint h;
with hints as (
   select name,sql_feature
          ,class,inverse
          ,version,version_outline
          ,target_level
         ,decode(bitand(target_level,1),0,'no','yes') Statement_level
         ,decode(bitand(target_level,2),0,'no','yes') Query_block_level
         ,decode(bitand(target_level,4),0,'no','yes') Object_level
         ,decode(bitand(target_level,8),0,'no','yes') Join_level
   from v$sql_hint h
)
select *
from hints
where statement_level='yes'
  and to_number(regexp_substr(version,'^\d+')) >= 18
order by version;

Result:

NAME              SQL_FEATURE     CLASS                VERSION  TARGET_LEVEL STATEMENT_LEVEL QUERY_BLOCK_LEVEL OBJECT_LEVEL JOIN_LEVEL
----------------- --------------- -------------------- -------- ------------ --------------- ----------------- ------------ ----------
PDB_LOCAL_ONLY    QKSFM_DML       PDB_LOCAL_ONLY       18.1.0              1 yes             no                no           no
SUPPRESS_LOAD     QKSFM_DDL       SUPPRESS_LOAD        18.1.0              1 yes             no                no           no
SYSTEM_STATS      QKSFM_ALL       SYSTEM_STATS         18.1.0              1 yes             no                no           no
MEMOPTIMIZE_WRITE QKSFM_EXECUTION MEMOPTIMIZE_WRITE    18.1.0              1 yes             no                no           no
SKIP_PROXY        QKSFM_ALL       SKIP_PROXY           18.1.0              1 yes             no                no           no
CURRENT_INSTANCE  QKSFM_ALL       CURRENT_INSTANCE     18.1.0              1 yes             no                no           no
JSON_LENGTH       QKSFM_EXECUTION JSON_LENGTH          19.1.0              1 yes             no                no           no
QUARANTINE        QKSFM_EXECUTION QUARANTINE           19.1.0              1 yes             no                no           no
cbo hints oracle query optimization undocumented oracle

Create External Table as Select

Posted on March 9, 2018 by Roger MacNicol Posted in curious, oracle, SmartScan 2,014 Page views Leave a comment

I was looking through a test script and saw something I didn’t know you could do in Oracle. I mentioned it to an Oracle ACE and he didn’t know it either. I then said to the External Table engineers “Oh I see you’ve added this cool new feature” and he replied dryly – “Yes, we added it in Oracle 10.1”. Ouch! So just in case you also didn’t know, you can create an External Table using a CTAS and the ORACLE_DATAPUMP driver.

This feature only work with the ORACLE_DATAPUMP access driver (it does NOT work with with the LOADER, HIVE, or HDFS drivers) and we can use it like this:

SQL> create table cet_test organization external
  2  (
  3    type ORACLE_DATAPUMP
  4    default directory T_WORK
  5    location ('xt_test01.dmp','xt_test02.dmp')
  6  ) parallel 2
  7  as select * from lineitem
 
Table created.

Checking the results shows us

-rw-rw---- ... 786554880 Mar 9 10:48 xt_test01.dmp 
-rw-rw---- ... 760041472 Mar 9 10:48 xt_test02.dmp

This can be a great way of creating a (redacted) sample of data to give to a developer to test or for a bug repro to give to support or to move between systems. 

oracle oracle undocumented behaviour Roger MacNicol SmartScan undocumented oracle

Oracle issues after upgrade to 12.2

Posted on November 24, 2017 by Sayan Malakshinov Posted in 12.2, bug, oracle 2,494 Page views 2 Comments

Sometimes it’s really hard even to create reproducible test case to send it to oracle support, especially in case of intermittent errors.
In such cases, I think it would be really great to have access to similar service requests or bugs of other oracle clients.
So while my poll about knowledge sharing is still active, I want to share a couple of bugs we have faced after upgrade to 12.2 (and one bug from Eric van Roon). I’m going to remove the bugs from this list when they become “public” or “fixed”.
If you want to add own findings into this list, you can add them into comments. To make this process easier, you can provide just symptomps, short description and the link to own post with details – I’ll add it just as a link.
Continue reading→

12.2.0.1 bind variable bug deterministic functions oracle troubleshooting undocumented oracle

Ampersand instead of colon for bind variables

Posted on September 27, 2017 by Sayan Malakshinov Posted in curious, oracle, SQL, SQL*Plus, undocumented 2,635 Page views 1 Comment

I’ve troubleshooted one query today and I was very surprised that bind variables in this query were specified with &ampersand instead of :colon! I have never seen this before and I couldn’t find anything about this in documentation…
Unfortunately SQL*Plus doesn’t support ampersand yet, even if you disable define (“set define off”),
so I’ve tested such behaviour with this code:

set def off serverout on
exec declare s varchar2(1); begin execute immediate 'select 1 from dual where dummy=&var' into s using 'X'; dbms_output.put_line(s); end;

And it really works! //at least on 11.2.0.2 and 12.2.0.1

SQL> set def off serverout on
SQL> exec declare s varchar2(1); begin execute immediate 'select 1 from dual where dummy=&var' into s using 'X'; dbms_output.put_line(s); end;
1

PL/SQL procedure successfully completed.

SQL> select substr(sql_text,1,40) stext,sql_id,executions,rows_processed from v$sqlarea a where sql_text like '%dual%&var';

STEXT                                 SQL_ID        EXECUTIONS ROWS_PROCESSED
------------------------------------- ------------- ---------- --------------
select 1 from dual where dummy=&var   ckkw4u3atxz02          3              3

SQL> select * from table(dbms_xplan.display_cursor('ckkw4u3atxz02'));

PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------
SQL_ID  ckkw4u3atxz02, child number 0
-------------------------------------
select 1 from dual where dummy=&var

Plan hash value: 272002086

--------------------------------------------------------------------------
| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |      |       |       |     2 (100)|          |
|*  1 |  TABLE ACCESS FULL| DUAL |     1 |     2 |     2   (0)| 00:00:01 |
--------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - filter("DUMMY"=:VAR)


18 rows selected.

Update: Btw, it works for SQL only, not for PL/SQL:

SQL> var v varchar2(1);
SQL> begin &v = 'Z'; end;
  2  /
begin &v = 'Z'; end;
      *
ERROR at line 1:
ORA-06550: line 1, column 7:
PLS-00103: Encountered the symbol "&" when expecting one of the following:

SQL> exec &v := 'X';
BEGIN &v := 'X'; END;

      *
ERROR at line 1:
ORA-06550: line 1, column 7:
PLS-00103: Encountered the symbol "&" when expecting one of the following:
The symbol "&" was ignored.
SQL> exec :v := 'X';

PL/SQL procedure successfully completed.

SQL> select * from dual where dummy=&v
  2  ;

D
-
X

And we can can use mixed placeholders:

SQL> select * from dual where dummy=&v and &v=:v;

D
-
X
ampersand bind variable colon oracle undocumented oracle

Why you dont want to set _partition_large_extents FALSE

Posted on May 4, 2017 by Roger MacNicol Posted in oracle, SmartScan, undocumented 2,097 Page views Leave a comment

I’ve seen some blogs recommending that _partition_large_extents be set to FALSE for a variety of space conserving reasons without the authors thinking about the negative impact this is going to have on Smart Scan. Large Extents cause an INITIAL allocation of 8 MB and a NEXT allocation of 1 MB and they have been the default for table spaces on Exadata since 11.2.0.2. You can verify that large extents are in use by a given table or partition by:

Select segment_flags 
From sys_dba_segs 
where segment_name = <table_name> 
and owner = <schema_name>;

The segment flag bit for large extents is 0x40000000.

This pattern of allocation is design to work optimally with Smart Scan because Smart Scan intrinsically works in 1 MB chunks.  Reads of ASM allocation units are split into maximum 1 MB chunks to be passed to the filter processing library to have their blocks sliced and diced to create the synthetic blocks that contain only the rows and columns of interest to return to the table scan driver. When less than 1 MB gets allocated at a time to a segment and then the next contiguous blocks gets allocated to a different  segment, each separate run of blocks will be read by a different MBR. Each run will be passed separately to Smart Scan and we get sub-optimal chunks to work on increasing both the overhead of processing and the number of round trips needed to process the table scan. The design of Smart Scan is predicated on scooping up contiguous runs of data from disk for efficient processing.

This matters particularly for HCC data and for chained rows.

Continue reading→
HCC oracle Roger MacNicol row chaining SmartScan undocumented oracle
photo Sayan Malakshinov

Oracle ACE Pro Oracle ACE Pro Alumni

DEVVYOracle Database Developer Choice Award winner

Oracle performance tuning expert

UK / Cambridge

LinkedIn   Twitter
sayan@orasql.org

Recent Posts

  • Oracle Telegram Bot
  • Partition Pruning and Global Indexes
  • Interval Search: Part 4. Dynamic Range Segmentation – interval quantization
  • Interval Search Series: Simplified, Advanced, and Custom Solutions
  • Interval Search: Part 3. Dynamic Range Segmentation – Custom Domain Index

Popular posts

Recent Comments

  • Oracle SQL | Interval Search: Part 4. Dynamic Range Segmentation – interval quantization on Interval Search: Part 3. Dynamic Range Segmentation – Custom Domain Index
  • Oracle SQL | Interval Search: Part 4. Dynamic Range Segmentation – interval quantization on Interval Search: Part 2. Dynamic Range Segmentation – Simplified
  • Oracle SQL | Interval Search: Part 4. Dynamic Range Segmentation – interval quantization on Interval Search: Optimizing Date Range Queries – Part 1
  • Oracle SQL | Interval Search Series: Simplified, Advanced, and Custom Solutions on Interval Search: Part 2. Dynamic Range Segmentation – Simplified
  • Oracle SQL | Interval Search: Part 2. Dynamic Range Segmentation – Simplified on Interval Search: Part 3. Dynamic Range Segmentation – Custom Domain Index

Blogroll

  • Alex Fatkulin
  • Alexander Anokhin
  • Andrey Nikolaev
  • Charles Hooper
  • Christian Antognini
  • Coskan Gundogar
  • David Fitzjarrell
  • Igor Usoltsev
  • Jonathan Lewis
  • Karl Arao
  • Mark Bobak
  • Martin Bach
  • Martin Berger
  • Neil Chandler
  • Randolf Geist
  • Richard Foote
  • Riyaj Shamsudeen
  • Tanel Poder
  • Timur Akhmadeev
  • Valentin Nikotin
  • 1
  • 2
  • Next
©Sayan Malakshinov. Oracle SQL